4100ES-S1 Fire Indicator Panel Installation \& Maintenance

Australian
Installation \&
Maintenance
Manual

LT0394
Issue 1.9

Copyrights and Trademarks

©2006, 2014 Tyco Australia Pty Limited. All Rights Reserved.
All specifications and other information shown were current as of document revision date, and are subject to change without notice.

Tyco, Simplex, the Simplex logo, MAPNET II, IDNet, TrueAlarm, SmartSync, WALKTEST, MINIPLEX, and TrueAlert are trademarks of Tyco International Services AG or its affiliates in the U.S. and/or other countries. VESDA is a trademark of Xtralis.

Simplex fire alarm technology is protected by the following U.S. Patent Numbers: TrueAlarm analog smoke detection: 5,155,468; 5,173,683 and 5,543,777. IDNet and MAPNET II addressable communications; 4,796,025. TrueAlert addressable notification; 6,313,744 and 6,426,697. SmartSync horn/strobe control; 6,281,789.

Approvals

Australian Standard AS 4428.1
ActivFire Listing Number afp1682

Manufacture

The 4100ES-S1 is a Fire Indicator Panel manufactured by Tyco Fire Protection Products for:

Tyco Services Fire \& Safety
47 Gilby Road
Notting Hill
VIC 3168
AUSTRALIA

Phone : (03) 9538-7220
Fax : (03) 9538-7255

Product / Site

Name	
Serial \#	
Manufacture Date	

Non-Disclosure Agreement

Tyco (THE COMPANY) and the User of this/these document(s) desire to share proprietary technical information concerning electronic systems.

For this reason the company is disclosing to the User information in the form of this/these document(s). In as much as the company considers this information to be proprietary and desires that it be maintained in confidence, it is hereby agreed by the User that such information shall be maintained in confidence by the User for a period of TEN YEARS after the issue date and only be used for the purpose for which it was supplied.

During this period, the User shall not divulge such information to any third party without the prior written consent of the company and shall take reasonable efforts to prevent any unauthorised disclosure by its employees. However, the User shall not be required to keep such information in confidence if it was in their possession prior to its receipt from the company; if it is or becomes public knowledge without the fault of the User; or the information becomes available on an unrestricted basis from a third party having a legal right to disclose such information

The User's receipt and retention of this information constitutes acceptance of these terms.
This information is copyright and shall not be reproduced in any form whatsoever

End User Liability Disclaimer

The 4100ES-S1 Fire Indicator Panel provides a configuration programming facility, which may be accessed via a programming computer using a "dongle". Because this programming facility allows the user to define in detail the operation of the 4100ES-S1 System being customised, changes may be made by the user that prevent this installation from meeting statutory requirements.

The Company, therefore cannot accept any responsibility as to the suitability of the functions generated by the user using this programming facility

Model Number \& Firmware Revision

This manual applies to product with the following:
Model number: 4100ES-S1
Firmware revision : 1.02.04 and on

Document

```
Document Name : LT0394 4100ES-S1 Installation & Maintenance Manual
Issue: V1.9 24 Feb 2015
```


Amendment Log

5 July 2006	Issue 1.0	Original based on LT0350 1.0.7
6 October 2006	Issue 1.1	References to LT0432 and 1976-181 Wiring Diagrams added.
30 Nov. 2006	Issue 1.2	Updated drawings 1976-181 Sheets 102, 203, 500.
23 Jan. 2007	Issue 1.3	Changes to T-GEN connection, checking system wiring.
21 Feb. 2007	Issue 1.4	Changes to AIU/PPU Brigade Interface mounting
14 June 2012	Issue 1.5	Changes for 4100ES introduction
7 March 2014	Issue 1.6	Update to SPS Troubleshooting, added Install Mode
3 June 2014	Issue 1.7	Drg 1976-174 sheet 4 removed.
29 Jan 2015	Issue 1.8	Battery charger adjustment updated.
24 Feb 2015	Issue 1.9	Updated drawing 1976-181 Sheet 411.

Cautions, Warnings, and Regulatory Information

READ AND SAVE THESE INSTRUCTIONS. Follow the instructions in this installation manual. These instructions must be followed to avoid damage to this product and associated equipment. Product operation and reliability depends upon proper installation.

DO NOT INSTALL ANY SIMPLEX ${ }^{\circledR}$ PRODUCT THAT APPEARS DAMAGED. Upon unpacking your Simplex product, inspect the contents of the carton for shipping damage. If damage is apparent, immediately file a claim with the carrier and notify your Simplex product supplier.

SAFETY HAZARD - The 4100ES-S1 CPU Card includes a lithium battery. There is danger of explosion if the battery is incorrectly replaced. Replace only with the same or equivalent type recommended by the manufacturer. Dispose of used batteries according to the manufacturer's instructions.

ELECTRICAL HAZARD - Disconnect electrical field power when making any internal adjustments or repairs. All repairs should be performed by a representative or authorized agent of your local Simplex product supplier.

STATIC HAZARD - Static electricity can damage components. Therefore, handle as follows:

- Ground yourself before opening or installing components (use a suitable wrist-strap and cable clipped to the frame or an earth connection of the 4100ES-S1).
- Prior to installation, keep components wrapped in anti-static material at all times.

EYE SAFETY HAZARD - Under certain fibre optic application conditions, the optical output of this device may exceed eye safety limits. Do not use magnification (such as a microscope or other focusing equipment) when viewing the output of this device.

RADIO FREQUENCY ENERGY - This equipment generates, uses, and can radiate radio frequency energy and if not installed and used in accordance with the instruction manual, may cause interference to radio communications. It has been tested and found to comply with the limits defined in AS 4428.0-1997 and Amendment 1:2002.

SYSTEM REACCEPTANCE TEST AFTER SOFTWARE CHANGES - To ensure proper system operation, this product must be tested in accordance with AS 1670 after any programming operation or change in site-specific software. Reacceptance testing is required after any change, addition or deletion of system components, or after any modification, repair or adjustment to system hardware or wiring.

IMPORTANT: Verify 4100ES Programmer, Executive, and Slave Software compatibility when installing or replacing system components. Refer to the relevant Product Bulletins from Simplex Fire Products Australia (www.simplexfire.com.au) for compatibility information.

Table of Contents\{ XE "Table of Contents" \}

Copyrights and Trademarks iii
Approvals iii
Manufacture. iii
Product / Site iii
Non-Disclosure Agreement iv
End User Liability Disclaimer iv
Model Number \& Firmware Revision v
Document v
Amendment Log V
Cautions, Warnings, and Regulatory Information vi
Table of Contents vii
List of Figures xiii
List of Tables xiv
Chapter 1 Introduction to the 4100ES-S1 Fire Alarm System 1-1
Introduction 1-1
In this Chapter 1-1
Basic Configuration 1-2
Overview 1-2
System Design 1-2
4100ES-S1 Part Codes 1-3
Overview 1-3
Assemblies, Cards \& \& Modules 1-3
Kits. 1-3
Labels (expansion/spares) 1-4
Looms (expansion/spares) 1-4
4100 Part Codes (Non-4100ES) 1-4
Glossary 1-5
Chapter 2 Installing 4100ES-S1 Components 2-1
Introduction 2-1
In this Chapter 2-1
Introduction to 4100ES-S1 Cabinet 2-2
Overview 2-2
Bays 2-2
CPU Motherboard 2-3
CPU Card 2-4
CPU Card LEDs 2-5
Operator Interface 2-6
Additional CPU Motherboard Modules 2-6
System Power Supply (SPS) 2-6
The Power Distribution Interface (PDI) 2-8
Mains Outlet 2-8
Step 1. Mounting Cabinets 2-9
Overview 2-9
Step 2. Mounting Card Bays to Cabinets 2-9
Overview 2-9
Step 3. Configuring Cards 2-9
Overview 2-9
CPU Motherboard Configuration 2-9
CPU Daughter Card Configuration 2-10
SPS Configuration 2-10
PDI Configuration 2-10
Configuring Other Cards 2-10
Step 4. Interconnecting Modules and Bays 2-11
Overview 2-11
Guidelines 2-11
Card Interconnections in the CPU Bay 2-11
Card Interconnections Within Expansion Bay 2-11
Basic Bay-To-Bay Interconnections 2-11
Connecting to Motherboards 2-12
Step 5. Installing Modules into Expansion Bays. 2-13
Overview 2-13
Placement Guidelines 2-13
Installing 4" X 5" Cards 2-15
Installing Motherboards 2-16
Step 6. Installing LED/Switch Modules into Expansion Bays 2-17
Overview 2-17
The LED/Switch User Interface 2-18
LED/Switch Controller Card 2-18
Configuring the LED/Switch Controller Card 2-19
Mounting LED/Switch Modules to the Expansion Bay 2-19
Mounting the Additional LED/ Switch Controller Card 2-20
LED/Switch Modules 2-21
Wiring Instructions 2-21
4100ES Fan Control Module 2-22
Overview 2-22
Labelling 2-22
Mounting \& Connection 2-22
Programming 2-22
Installing Other Modules 2-24
Chapter 3 Networking 3-1
Introduction 3-1
In this Chapter 3-1
Network Configuration 3-2
Overview 3-2
Ring and Star Configurations 3-2
Connecting Loops 3-3
System Design 3-3
Getting Started 3-4
Overview 3-4
Introduction to the 4100 Network Interface Card (NIC) 3-4
Overview 3-4
Network Module Illustrations 3-5
NIC Card LED Indications 3-5
NIC Media Cards 3-6
Requirements and Limitations 3-7
Step 1. Configuring Network Cards 3-7
Overview 3-7
CPU Motherboard Jumper Settings 3-7
NIC Card Address Setting 3-7
NIC Card Jumper Settings 3-8
Wired Media Card Jumper Settings 3-8
Step 2. Mounting Media Cards to the NIC 3-9
Overview 3-9
Media Card Mounting 3-9
Step 3. Mounting Network Cards in the 4100ES-S1 3-9
Step 4. Wiring Network Cards 3-10
Overview 3-10
Wiring Guidelines 3-10
Wiring Distances 3-11
Fibre-Optic Wiring 3-12
Fibre Optic Connection Types 3-12
4190-9010 Coupler Requirements 3-13
Wiring with the Wired Media Card 3-14
Loop Wiring, mixed Fibre and Cable 3-17
Chapter 4 The System Power Supply \& Alarm Relay Card 4-1
Introduction 4-1
In this Chapter 4-1
SPS Specifications 4-2
Input/Output/BatterySpecifications 4-2
SPS Current Consumption 4-3
SPS Adjustments 4-4
Adjusting Voltages 4-4
Setting Jumpers and DIP Switches 4-4
SPS LED Indications 4-5
Status LEDs 4-5
Troubleshooting an SPS 4-6
Overview 4-6
"IDNet Power Monitor Trouble" 4-6
"Extra Device" 4-6
"Class A Trouble" 4-6
"Earth Fault Search" 4-6
"Short Circuit" 4-6
"Channel Fail" 4-6
"No Answer/ Bad Answer" 4-6
"Output Abnormal" 4-6
Noisy Buzz from the SPS 4-6
The Alarm Relay Card 4-7
Overview 4-7
Mounting (factory installed) 4-7
Configuration 4-8
Notes 4-8
Warning 4-8
Specification 4-8
Brigade Interfaces 4-9
Overview 4-9
Format 4-9
Applications 4-9
Kit Contents 4-9
Door Mounting 4-9
General Wiring 4-10
Brigade Interfaces, Continued 4-10
AIU/PPU Mounting 4-10
AIU/PPU Wiring 4-10
ASE Mounting 4-10
ASE Wiring 4-10
Chapter 5 SPS Field Wiring (4100ES-S1) 5-1
Introduction 5-1
In this Chapter 5-1
General Field Wiring Guidelines 5-2
General Guidelines 5-2
SPS NAC Field Wiring Guidelines 5-3
Overview 5-3
Guidelines 5-3
Allocations 5-3
Class A (loop) NAC Wiring 5-4
Class B (string) NAC Wiring 5-5
Power Supply Wiring Distances 5-6
Overview 5-6
Class A NAC Wiring Table 5-6
Class B NAC Wiring Table 5-7
Using T-GEN 50 with 4100ES-S1 5-8
Overview 5-8
Powering the T-GEN 50 5-8
Controlling a T-GEN 50 with a Relay Module 5-10
T-GEN 50 Setting for Relay Operation 5-11
Controlling a T-GEN 50 from a NAC Output 5-12
T-GEN 50 Settings for NAC Operation 5-13
Fitting an Evacuation Control 5-14
Fitting a PA Microphone 5-14
100V Speaker Wiring 5-15
SPS Auxiliary Power Wiring 5-16
Overview 5-16
Guidelines 5-16
Wiring 5-17
SPS Relay Wiring 5-18
Overview 5-18
Aux 1 Relay 5-18
Alarm Relay Card 5-18
SPS IDNet Wiring 5-19
Overview 5-19
DNet Wiring 5-19
Guidelines 5-19
Notes 5-20
Class A (loop) Wiring 5-21
Class B (string) Wiring 5-22
Chapter 6 Using Install Mode. 6-1
Introduction 6-1
In this Chapter 6-1
Adding Devices to Install Mode 6-2
Adding a Single Device to Install Mode 6-2
Adding Multiple Devices to Install Mode 6-2
Viewing and Removing Devices in Install Mode 6-3
Viewing Contents of Install Mode list 6-3
Removing Individual Devices from Install Mode 6-3
Removing Many Points from Install Mode 6-3
Chapter 7 PC Software Connections 7-1
Introduction 7-1
In this Chapter 7-1
Software Modes 7-2
Overview 7-2
Software Modes 7-2
Software Modes (continued) 7-3
Ethernet Service Port and Serial Service Port 7-4
Ethernet Service Port Overview (0566-719 only) 7-4
Serial Service Port Overview 7-4
Chapter 8 Installation Checklist, Commissioning \& Maintenance 8-1
Introduction 8-1
In this Chapter 8-1
Alignment \& Adjustment 8-2
Overview 8-2
Power Up \& Placing into Operation 8-3
Maintenance 8-4
Appendix A Card Address DIP Switch. A-1
Overview A-1
Appendix B Programming Requirements B-1
Introduction B-1
Required Features B-1
Notes B-1
Appendix C Checking System Wiring C-1
Overview C-1
Using the Volt/ Ohm Meter C-1
Meter Readings C-2
Appendix D Earth Fault Detection D-1
Overview D-1
General Guidelines D-2
Earth Fault Searching from the Front Panel D-3
Overview D-3
Access Level Selection D-3
Starting the Earth Fault Search D-3
Search Option A: Select Location D-4
Search Option B: Select Channel D-5
Search Option C: Last Search Result D-5
Completing the Search D-5
Search Results D-6
Overview D-6
Non-Point Faults D-6
Point Faults D-6
Fault Not Found D-7
No Fault D-7
Result Not Available D-7
Appendix E Related Documentation E-1
Appendix F Compatible Actuating Devices F-1
Introduction F-1
In this Chapter F-1
List of Approved Devices F-1
Compatible Detectors, IDNET F-4
Compatible Addressable Field Devices, IDNet F-5
Appendix G 4100ES-S1 Specifications G-1
General G-1
Fuses G-1
Firmware Features G-1
Voltage \& Current Ratings of Modules \& Assemblies G-2
Appendix H Power Supply \& Battery Capacity Calculations H-1
Power Supply H-1
Battery Capacity H-1
Appendix I List of Drawings I-1

List of Figures $\{$ XE "List of Figures" \}

Figure 1-1. Basic 4100ES-S1 System 1-2
Figure 2-1. CPU Motherboard (566-227) 2-3
Figure 2-2. CPU Card (566-719) 2-4
Figure 2-3. Operator Interface 2-6
Figure 2-4. System Power Supply 2-7
Figure 2-5. The Power Distribution Interface (PDI) 2-8
Figure 2-6. Power and Communication Wiring for Motherboards (note that there are limitations of where motherboards can be placed - see next section) 2-12
Figure 2-7. Expansion Bay 4"x 5" Card Placement 2-13
Figure 2-8. Expansion Bay Motherboard Placement 2-14
Figure 2-9. Slave Card/PDI Connection 2-15
Figure 2-10. Installing the Motherboard in a 4100ES-S1 Expansion Bay 2-16
Figure 2-11. LED/Switch Modules 2-18
Figure 2-12. LED/Switch Controller 2-18
Figure 2-13. LED/Switch Card Mounting 2-19
Figure 2-14. Controller Card Mounting 2-20
Figure 2-15. LED/Switch Controller Wiring (approximately as viewed on the rear of the open bay door) 2-21
Figure 2-16. ME0456 Fan Control Module 2-23
Figure 3-1. Ring/Star Configuration Example 3-2
Figure 3-2. Interconnected Loop Configuration 3-3
Figure 3-3. 4100-6014 Network Interface Card. 3-5
Figure 3-4. The 4100-6057 Fiber-Optic Media Card 3-6
Figure 3-5. The 4100-6056 Wired Media Card 3-6
Figure 3-6. Media Card Mounting 3-9
Figure 3-7. Coupler Wiring 3-14
Figure 3-8. Wired Media Interconnection between CPU Motherboards in different panels 3-16
Figure 3-9. Example of Ring/Loop NetworkWiring 3-17
Figure 4-1. The Alarm Relay Card 4-7
Figure 5-1. The Ferrite Bead 5-2
Figure 5-2. Class A (loop) NAC Wiring 5-4
Figure 5-3. Class B (string) Wiring 5-5
Figure 5-4. Taking Ancillary Power from NAC1 5-9
Figure 5-5. Relay Module Connection to a T-GEN 50 5-10
Figure 5-6. NAC Connection to a T-GEN 50 5-12
Figure 5-7. Wiring an Evacuation Controller to a T-GEN 50 5-14
Figure 5-8. Examples of Evacuation Controls and PA Microphone 5-15
Figure 5-9. Auxiliary Power Wiring 5-17
Figure 5-10. Cable Distance \& Device Limits for Common Cable Sizes 5-20
Figure 5-11. Class A (loop) Wiring 5-21
Figure 5-12. Class B (string) Wiring 5-22
Figure 7-1. Service and Diagnostic Interface 7-2
Figure 7-2. Data Transfer Interface 7-2
Figure 7-3. Bootloader Interface 7-3
Figure 7-4. CPU card ports 7-4
Figure 7-5. Front Panel Ethernet Service Port 7-4
Figure A-1. DIP Switch SWx. A-1

\{ XE "List of Figures" \}List of Tables\{ XE "List of Figures" \}

\{ XE "List of Tables" \}
Table 2-1 Master Controller LEDs 1 through 4 2-5
Table 2-2 Switch/LED Format 2-22
Table 2-3 Switch Status 2-22
Table 2-4 Module Installation Documents for 4100ES-S1 2-24
Table 3-1 4100 NIC \& Media Cards - Electrical and Environmental Specifications 3-7
Table 3-2 Wiring Distances 3-11
Table 3-3 Dual Fiber Optic Cable Communications Distance Examples 3-13
Table 3-4 Single Fiber Optic Cable Communications Distance Examples using 4190-9010 Bi-Directional Couplers 3-13
Table 3-5 566-227 CPU Motherboard Wired Media Connections 3-14
Table 4-1 SPS Input and Output Specifications 4-2
Table 4-2 SPS Current Specifications 4-3
Table 4-3 Alarm Relay Card Jumper Positions 4-8
Table 5-1 Class A Wiring Distances 5-6
Table 5-2 Class B Wiring Distances 5-7
Table A-1 Card Addresses A-2
Table C-1 Acceptable Zone and Signal Circuit Meter Readings C-2

Chapter 1 Introduction to the 4100ES-S1 Fire Alarm System

Introduction

In this Chapter
Refer to the page number listed in this table for information on a specific topic.

Topic	See Page \#
Basic Configuration	$1-2$
4100ES-S1 Part Codes	$1-3$
4100 Part Codes (Non-4100ES)	$1-4$
Glossary	$1-5$

Basic Configuration

Overview

System Design

The basic version of the 4100ES-S1 is used for smaller or single-building applications. It is ideally placed in a small building that requires a limited number of notification appliances and initiating devices.
\{xe "4100 Fire Alarm System: standalone (overview)"\}\{xe "Standalone 4100 Fire Alarm System"\}
If a small building is being expanded, or if other buildings are being constructed in the same general area (as in a campus application), the basic 4100ES-S1 can be expanded via networking into one of the larger systems described in Chapter 3.

The basic 4100ES-S1 is a single cabinet containing these items: CPU, System Power Supply, and optional slave cards.

As standard, the 4100ES-S1 has one IDNet addressable loop that can support up to 250 devices. A second IDNet addressable loop can be added by fitting a 4100-3101AU IDNet module to the expansion bay in the cabinet (see Chapter 6).

The basic 4100ES-S1 can be expanded with a limited number of 4100-type legacy card/modules or newer 4" x 5" 4100ES modules.

All appliances and devices are connected to this one cabinet, as shown in Figure 1-1. \{xe "Basic 4100 Fire Alarm System: system design"\}

Figure 1-1. Basic 4100ES-S1 System

4100ES-S1 Part Codes

Overview

This section lists the parts that are supported by the 4100ES-S1 Fire Alarm System.

Assemblies, Cards \& \& Modules

The following is a list of assemblies, cards and modules used in 4100ES-S1:
These parts are included in the base 4100ES-S1:

- 742-516 CPU Motherboard (566-227)
- 4100-7158 CPU Card (566-719)
- 4100-9848AU System Power Supply, Australian version
- 4100-6033 Alarm Relay Card (566-058) plugged onto the SPS and used to supply the Brigade I/F relays.
- PA0915 Fuse Distribution Board, connected to the Auxiliary Power terminals of the System Power Supply
- 4100-2300 Expansion Bay Assembly (includes the metalwork with the PDI back-plane)
- 4100-1288 64 LED/64 Switch Controller module with mounting plate
- 4100-1282 8 SW/16 LED red/yellow module (2 off)

These parts may be used to expand a 4100ES-S1:

- 4100-1282 8 SW/16 LED red/yellow module
- 4100-3101AU IDNET Module - 250 point capacity
- 4100-3107AU IDNet+ Module - 246 point capacity, four loops
- 4100-3204 4 Point Relay Module
- 4100-3206 8 Point Relay Module
- 4100-1289 64 LED/64 Switch Controller module
- 4100-1287 24 Switch/24 red LED module
- 4100-1284 8 Switch 16 red/green LED module
- 4100-1281 8 Switch 8 yellow LED module
- 4100-0160 Internet Interface Module (566-355).
- ME0456 Fan Control Module

Kits

The following kits are available to install in a base 4100ES-S1:
Brigade Interfaces

- FP0935 ASE Door Kit (ASE not included)
- FP0937 PPU/AIU Door Kit (PPU/AIU not included)

Other

- 4100-KT0448 Fused DC Distribution Bd, XSPS AU Mounting
- 4100-KT0468 4100 Motherboard to 4100U Bay, Mounting Kit
- 4100-0766K T-GEN 50 and 4100U Mounting Bracket Kit
- ME0460 T-GEN 50 Evacuation Control Switch and Label
- ME0490 T-GEN 50/4100U Dynamic Microphone and lead

4100ES-S1 Part Code, Continued

Labels	\bullet	LB0602	Operator I/F ISO/Test Card
(expansion/spares)	\bullet	LB0605	Fan Control Zone Insert Card
	\bullet	$526-873$	Slide In Label, LED Switch Module, 1 Sheet of 6
	\bullet	$4100-1294$	LED Module Slide In Labels, Panel Set
	• LM0309	4100U Mains Lead With Filter	
Looms			
(expansion/spares)	\bullet	LM0310	4100U Battery Lead Set, 18U-21U
	\bullet	$734-008$	Harness, Power Comms, 4 Way, 2ft Length
	\bullet	$734-075$	Harness, Power Comms, 4 Way, 8ft Length
	\bullet	$116-226$	Sw/LED Module Ribbon Cable, 26 Way, 2in
	\bullet	$116-227$	Sw/LED Module Ribbon Cable, 26 Way, 6in

4100 Part Codes (Non-4100ES)

The following is a list of existing $4100+/ \mathrm{A} / \mathrm{U}$ cards and modules that may be used with 4100ES-S1.

- 4100-5004 8 AZF Monitor Zone
- 4100-0113 Dual RS232 Modem Interface
- 4100-3003 8 Relay Module
- 4100-4321 6 Supervised Relays
- 4100-3024 24 Relay Module
- 4100-0302 24 I/O Module
- 4100-0111 Quad Isolator Module
- 4100-6078 Modular Network Card (requires 2 media cards)
- 4100-6056 Wired Media Card RS485
- 4100-6057 Fibre Optic Media Card
- 4100-0154 VESDA High Level Interface

AZF	Alarm Zone Facility - means of grouping multiple detectors or devices, and providing common indication and control.
Class A Wiring	Method of connecting multiple devices or units in a loop. This requires up to twice as much wire but means that a short or open circuit in any one section will not prevent communication with every device.
Class B Wiring	Connection of multiple devices sequentially, or with spurs, uses the minimum amount of cable, but a single wiring fault can affect all devices at once.
FIP	Fire Indicator Panel - usually abbreviated to "panel".
GPO	General Power Outlet - mains power socket.
IDNet	Individual Device Network - latest generation of Simplex analogue addressable devices and the 2-wire loop that connects them.
MAPNet	Multi-Application Peripheral Network - an earlier version of addressable device communication superseded by IDNet. Some MAPNet devices can be used on IDNet loops.
NAC	Notification Appliance Circuit - switched DC output, usually with supervision for powering notification appliances and warning system devices.
NIC	Network Interface Card - provides network communications between multiple 4100/4100ES panels.
PID	Power Distribution Interface - the backplane power distribution system used in 4100ES.
Product Identification (part number).	
Semote Unit Interface - 2-wire communications loop used to connect	
4100/4100ES master panels with slave transponders.	
charger module. Also includes an IDNet loop port, three NAC outputs,	
and the brigade relay card.	

Chapter 2 Installing 4100ES-S1 Components

Introduction

In this Chapter
Refer to the page number listed in this table for information on a specific topic.

Topic	See Page \#
Introduction to 4100ES-S1 Cabinet	$2-2$
Step 1. Mounting Cabinets	$2-9$
Step 2. Mounting Card Bays to Cabinets	$2-9$
Step 3. Configuring Cards	$2-9$
Step 4. Interconnecting Modules and Bays	$2-11$
Step 5. Installing Modules into Expansion Bays	$2-13$
Step 6. Installing LED/Switch Modules into Expansion Bays	$2-17$
4100ES Fan Control Module	$2-22$

This chapter describes how to mount the 4100ES-S1 cabinet to a wall, and how to mount system card bays into the cabinets, modules to bays, etc.

Most of a 4100ES-S1 is already assembled within the factory. Steps 2 to 6 below are therefore not typically required in the field, but are included for reference.

The assembly drawings are included in the appendix of this manual for reference.
\qquad

Introduction to 4100ES-S1 Cabinet

Overview

Bays

The 4100ES-S1 cabinet contains the CPU, operator interface, system power supply (SPS), backup batteries, and any additional modules that the panel requires.

These items are organized into sub-assemblies called bays or card frames, each with a swing-down front door. The 4100ES-S1 has two bays: the CPU bay and one expansion bay.

In the standard 4100ES-S1, the CPU bay contains the SPS and the CPU Motherboard with CPU Daughter card. The front of the bay holds the Operator Interface, consisting of the LCD, keyboard, and fault sounder. Older 4100-style motherboards can be mounted in the CPU bay.

The expansion bay has a PDI (Power Distribution Interface) backplane into which can be plugged a number of 4" x 5" 4100ES modules. Older 4100-style motherboards can also be mounted in the expansion bay.

Continued on next page

Introduction to 4100ES-S1 Cabinet, Continued

CPU Motherboard
The 4100ES CPU motherboard (see Figure 2-1) holds the CPU card, which is central to the 4100 ES-S1 system. It is mounted in the CPU bay, occupying two slots of space immediately beside the power supply. This board does not have a card address DIP switch (the CPU is always address 0).
\{xe "CPU motherboard: about"\}\{xe "4100U: CPU motherboard"\}

Figure 2-1. CPU Motherboard (566-227)

Introduction to 4100ES-S1 Cabinet, Continued

The CPU card (see Figure 2-2) mounts onto the CPU motherboard. The CPU card contains an Ethernet service port, a direct drive user interface connection, and a serial port for a service modem.
\{xe "CPU daughter card: about"\}\{xe "4100U: CPU daughter card"\}

Figure 2-2. CPU Card (566-719)

Introduction to 4100ES-S1 Cabinet, Continued

CPU Card LEDs
The CPU card LEDs indicate Bootloader status as shown in Table 2-1.

Table 2-1. CPU Card LEDs 1 through 4

Status Condition	LED D	LED C	LED B	LED A
Bootloader Initialization	On (0.25s), Off (0.25s)			
Bad Master CRC or No Master Present	On	Off	Off	Off
Diagnostic Fail - RAM	On	Off	Off	On
Diagnostic Fail - Bootloader CRC	On	Off	On	Off
Downloading Master	On	Off	On	On
Downloading CFIG	On	On	Off	Off
Downloading MsgLib	On	On	Off	On
Downloading BootLoader	On	On	On	Off
Download Successful	On	On	On	On

Introduction to 4100ES-S1 Cabinet, Continued

Operator Interface

The operator interface (see Figure 2-3) lets a user operate the panel. It provides alarm, fault, and isolate status alerts, and lets the user review historical logs and perform diagnostics.

Figure 2-3. Operator Interface

4100-6014 Modular Network Interface Card (NIC). A daughter card that mounts to the CPU motherboard. Performs 4100 networking operations. May be installed with 41006056 Wired Media Cards and/or the 4100-6057 Fibre Media Cards.

The 4100 ES-S1 is powered by the SPS (System Power Supply), which gets its primary power from the AC mains and its secondary power from the backup batteries.

The SPS in the 4100ES-S1 has hardware and software that are specific to Australian requirements.

The system power supply is mains powered and has backup batteries that get switched in on mains failure. It is the initial power source for the CPU and the host cabinet. The SPS provides 24 V card power to the CPU motherboard and the other cards. It also supplies 24 V power on a separate bus to the outputs, e.g. Notification Appliance Circuits (NACs).

The SPS also has three on-board NACs that support reverse polarity supervision. \{xe "system power supply (SPS): about"\}\{xe "4100U: system power supply (SPS)"\}It provides an IDNet channel, auxiliary power, an auxiliary relay, and it mounts and drives the Alarm Relay Card.

The SPS performs functions such as brownout detection, battery transfer, battery recharge, earth fault detection, and power limiting of outputs. It provides voltage and current information to the CPU card, which can then be displayed at the user interface.

The 24 VDC bulk power on the SPS is unregulated, and is divided into three feeds: 24 V Card, 24V Signal, and 24V Aux Power. 24V Card, which supplies the cards, and Aux Power, which is accessible on screw terminals, are each rated at 2A and protected by a PTC. The 27.3 V regulated battery charger is powered from the bulk supply and is switched off during alarm. The charger has two programmable options of rating: 1.4A for 6-18Ahr batteries, and 3.3A for batteries above 18Ahr.

The "heavy" 24V Signal feed is only accessible via the NACs on the SPS. \{xe "4100U: power connections"\}\{xe "system power: 4100U"\}

Introduction to 4100ES-S1 Cabinet, Continued

The basic 4100ES-S1 has a Fuse Distribution Board mounted on the SPS chassis and connected to the Auxiliary Power terminals. See Figure 2-4. This provides four sets of supply terminals, each individually fused at 1 A , but the collective capacity is still limited to 2A from the Auxiliary Power supply. The fuses are not directly supervised.

Figure 2-4. System Power Supply

Introduction to 4100ES-S1 Cabinet, Continued

The Power Distribution Interface (PDI)

In the expansion bay, power and data are distributed via the power distribution interface (PDI). The PDI is a wiring board (see Figure 2-5) with eight card slots, each of which can accommodate a 4 -inch $(102 \mathrm{~mm}) \times 5$-inch $(127 \mathrm{~mm})$ slave card. If 4100 -style motherboards are used, they must be mounted over the PDI using a kit of metal standoffs (part number 4100-KT0468).
\{xe "4100U: power distribution interface"\}\{xe "power distribution interface (PDI):

POWER/COMMS

 CONNECTORS about"\}

Mains Outlet
The rightmost 2" slot in the expansion bay is occupied by a mounting bracket holding a single switched General Power Outlet (GPO). The fixed AC power wiring must be installed to this GPO by a suitably qualified electrician.

IMPORTANT: AC power must be provided to the 4100ES-S1 from a dedicated branch circuit.

The SPS plugs into this GPO, and can be switched off or unplugged for servicing.

Step 1. Mounting Cabinets

Overview
 The important aspects of mounting the cabinet are:

- Access for the operator;
- Height of displays and controls;
- Free space for door opening;
- Cable entry for field wiring.

Refer to AS 1670.1 for the height requirement and minimum access requirements.
In general, 4100ES-S1 cabinets will be wall mounted. There are four dimpled mounting holes in the rear of the cabinet. These are accessible from the inside of the cabinet with the equipment bays still fitted, but it may be more convenient to remove the CPU bay. See the instruction in the next section about this procedure.

Mounting hole and cabinet dimensions are shown in drawing 1976-176, in the appendix to this manual.

Door opening is to the left as standard.

Step 2. Mounting Card Bays to Cabinets

The CPU Bay and the Expansion Bay are both attached to the rear of the cabinet by four $8 / 32$ " screws. The bays are prevented from movement during transit by locking screws fitted just below the upper mounting screws.

To remove a bay, remove the locking screws, loosen the mounting screws, then lift the bay up and out. Disconnect any wiring from the bay before lifting it free. Assembly is the reverse of this procedure. The transit locking screws do not have to be re-fitted to an installed cabinet.

Step 3. Configuring Cards

\{xe "4100U: card configuration"\}

Overview

CPU Motherboard Configuration

The CPU, SPS, and all other modules to be mounted in the 4100ES-S1 cabinet must be configured to operate correctly in the system via their DIP switch and jumper ports. This section describes the hardware configuration for the CPU and SPS, since they will always be used in the CPU bay.

The CPU motherboard must be jumpered as follows:
\{xe "card configuration: CPU"\{xe "CPU motherboard: configuring"\}
P9 determines whether the RUI SHIELD signal is connected to 24 C or Earth.

- Position 1 - 2: SHIELD to 24 C (default). Set to this position unless the system uses a TrueAlert Power Supply. Use this setting for 4100ES-S1.
- Position 2 - 3: SHIELD to Earth. Set to this position only if the system uses a TrueAlert Power Supply.

Step 3. Configuring Cards, Continued

Note: Some devices that connect to RUI have inherently grounded shield terminals, in which case 24 C cannot be used. If 24 C is used, a Negative Ground Fault will occur.

P10/P11: P10 is associated with Port 1 and P11 is associated with Port 2. P10 and P11 are used to set the CPU motherboard up to be attached to either a network card or a RS232/2120 card.

- Position 1 - 2: Network card (NIC) plugged into CPU motherboard (default).
- Position 2 - 3: RS-232/2120 card plugged into CPU motherboard.

CPU Daughter Card Configuration

SPS Configuration

PDI Configuration

Configuring Other Cards

The SPS must be configured as follows:
\{xe "card configuration: SPS"\{xe "system power supply (SPS): configuring"\}
SW1: Using DIP switch SW1, set the SPS card address to 1 . Use the address table in Appendix A for the switch settings.

P2: P2 configures the IDNet shield connection.

- Position 1 - 2 (bottom) : Connects the shield to 0 V (default). Use this setting for 4100ES-S1.
- Position 2 - 3 (top) : Connects the shield to earth ground.

P3 configures relay 3 on the 4100-6033 Alarm Relay Card.

- Position 1 - 2 (top) : Removes fault monitoring on Relay 3 (default). Use this setting for 4100ES-S1.
- Position 2 - 3 (bottom) : Makes Relay 3 activate when there is a fault.

P1: Earth connect jumper.

- Position 1 - 2 (rhs): Enables Earth fault monitoring. Set to this position unless the system uses a TrueAlert Power Supply under common 0 V. Use this setting for 4100ES-S1.
- Position $2-3$ (lhs): Disables Earth fault monitoring. Set to this position only if the system uses a TrueAlert Power Supply under common 0 V.

P4/P5: The PDI can be configured to draw its power from different sources via P4 and P5. For 4100ES-S1 both links should be in position 1-2.

Refer to the appropriate installation instructions to configure other cards that are located in the CPU and expansion bays. The common 4100ES cards and modules are included in this manual. Refer to Appendix D for a list of publications.

Step 4. Interconnecting Modules and Bays
 \{xe "4100U: card configuration"\}

Overview

Guidelines

Card
 Interconnections in the CPU Bay

Each card has to be interconnected with every other card in its bay. At the same time, bays in the 4100ES-S1 also have to be connected together. Read this section to ensure that cards and bays are interconnected correctly. Refer also to drawings 1976-136 and 1976-137.

The basic 4100ES-S1 will have all necessary interconnection wiring already fitted, but additional wiring may be necessary if expansion modules are fitted.

Review the following guidelines before interconnecting modules and bays.

- The SPS provides 24 V power to the CPU motherboard.
- The CPU motherboard provides 8 V (3 A capacity) for use by legacy 4100 slave cards. 24 V Card power is routed through the motherboard for slave card use.
- 4100 internal comms and power are harnessed to other bays. Do not connect the 8 V at P 7 to an 8 V converter on a Goldwing or remote interface card.
- 24 V Card power from the SPS is rated at 2 A maximum.
- The 4-wire comms and power harness carries only the 24 V Card supply to a PDI, and not the 24 V Signal supply.
- Some of the wire harnesses supplied with add-on cards may not be required. These spare harnesses should be stored in case of future requirements.

Connect P8 on the SPS to P1 on the CPU motherboard using the 8 wire harness with eight-position Molex minifit connector (provided).
\{xe "mounting: cards onto the PDI"\}The power distribution interface (PDI) mounted to the back of the expansion cabinet carries $24 V$ Card power and data to each 4"x 5" card.

Refer to "Step 5: Installing Modules into Expansion Bays for instructions on mounting 4 "x 5" cards to the PDI. Also bear in mind that legacy 4100 motherboards require nonPDI interconnections to each other and to the CPU Motherboard.

The 4 wire harness $734-008$ is used to carry 24 V Card power and coms from the CPU bay to the expansion bay. Connector P1 on the PDI receives power from P6 on the SPS or P7 or P8 on the CPU Motherboard. P2 on the PDI is used to connect power and comms to a 64/64 Controller. In a larger system, P3 on the PDI is used to carry power and comms to the next PDI, but is not used in 4100ES-S1.

Step 4. Interconnecting Modules and Bays, Continued

Connecting to Motherboards

Panels with legacy motherboards in the expansion bay require some non-PDI connections. If you need to connect a harness to a motherboard, refer to Figure 2-6 and follow these steps. Make sure to route the power and communication wiring on the left side of the bay.

1. Connect one end of the 733-525 Harness to a motherboard in the CPU bay.

If the CPU bay has no additional motherboards (the usual case), connect the harness to the P8 and P7 connectors of the CPU motherboard.

- Insert the harness connector with the blue wire into the P8 connector. Note that the P8 connector has eight pins. Insert the harness connector on either the top four pins or the bottom four pins, not in the middle.
- Insert the harness connector with the white wire into the P7 connector. Note that the P7 connector has eight pins. Insert the harness connector on either the top four pins or the bottom four pins, not in the middle.

2. Connect the other end of the harness to the leftmost motherboard in the next bay, as described below.

- Insert the harness connector with the blue wire into the P2 connector. Note that the P2 connector has eight pins. Insert the harness connector on either the top four pins or the bottom four pins, not in the middle.
- Insert the harness connector with the white wire into the P3 connector. Note that the P3 connector has eight pins. Insert the harness connector on either the top four pins or the bottom four pins, not in the middle.

Figure 2-6. Power and Communication Wiring for Motherboards (note that there are limitations of where motherboards can be placed - see next section)

Step 5. Installing Modules into Expansion Bays

Overview

Placement Guidelines

This section contains guidelines and instructions on installing 4"x 5" cards and traditional motherboards into the 4100ES-S1 expansion bay.

IMPORTANT: This section applies to aftermarket modules for expansion bays only. If you do not need to install any aftermarket modules at all, you have completed the panel installation and can apply AC power.

Refer to the following guidelines before mounting 4" x 5" cards and/or motherboards to the expansion bay.

- The expansion bay assembly includes a chassis, two end supports, one LED/switch frame, and a power distribution interface (PDI) board.
- An expansion bay holds up to four 4 " x 5 " modules if a T-GEN 50 is fitted, or up to six modules if not. See Figure 2-7.

Figure 2-7. Expansion Bay 4"x 5" Card Placement

Step 5. Installing Modules into Expansion Bays, Continued

Placement Guidelines (continued)

- Motherboards can be installed on top of the PDI in expansion bays. The data and power that would normally be bussed via the PDI are routed across the motherboards via their left and right connectors (J1 and P1).
- Up to four 2" (51 mm) x $111 / 2 "$ (292 mm) motherboards can be installed in an expansion bay if the pins on the left connector (usually P1) on the leftmost motherboard are removed. See Figure 2-8.
- Motherboards should be added from left to right, starting in slot 3.
- Relay motherboards must be the rightmost motherboards.
- The CPU motherboard generates the 8 V supply required for 4100 A motherboards. It also has the 4100A style Molex connectors to which a harness can be fitted as in Figure 2-6.

Up to four 2" x $11 \frac{1}{2}$ " motherboards can be mounted in the expansion bay. Three motherboards fit into Slots 3 through 5 ; the fourth can be added in Slot 6 if a T-GEN 50 is not fitted.

Figure 2-8. Expansion Bay Motherboard Placement

Step 5. Installing Modules into Expansion Bays, Continued

\{xe "mounting: modules to 4100 U back boxes"\}

Installing 4" X 5"

 CardsThe power distribution interface (PDI) is mounted to the back of the expansion bay. See Figure 2-9. The PDI contains slots for up to eight 4 " 5 " slave cards. Since the PDI carries power and data across the entire bay, it solves most interconnection issues, especially between 4"x 5" cards.

Use the following instructions and the figure below to mount 4"x 5" slave cards to the expansion cabinet.

1. Screw two standoffs and washers to the appropriate holes in the back of the cabinet. These holes must line up with the screw holes in the 4"x 5" card. See Figure 2-9.
2. Plug the 4 " x 5 " card into the appropriate blind mating connector. Seat the card firmly onto the PDI when installing to ensure complete insertion of the power connector into the PDI.
3. Secure the other end of the card to the standoffs with two $6 / 32$ " $\times 1 / 4$ " torx screws and washers.

Figure 2-9. Slave Card/PDI Connection

Step 5. Installing Modules into Expansion Bays, Continued

\{xe "mounting: motherboards to 4100 U back boxes"\}

Installing Motherboards

Use the following procedure when installing motherboards in an expansion bay. Start with the third slot from the left and fill to the right. The mounting items are available as kit 4100-KT0468.

1. Orient the motherboard with the connector labeled J1 on the right and the header labeled P1 on the left.
2. Attach four metal threaded standoffs and lockwashers into the screw holes on the chassis.
3. Attach two grey plastic standoffs to the motherboard socket mounting screws.
4. Secure the motherboard to the standoffs using four \#6 torx screws as shown below.

Figure 2-10. Installing the Motherboard in a 4100ES-S1 Expansion Bay
Figure 2-10 shows the motherboard being fitted to slot 2. In 4100ES-S1, slots 1 and 2 can't be used for motherboards.

Step 6. Installing LED/Switch Modules into Expansion Bays

Overview

The LED/switch user interface consists of a variety of modules, mounted to the front of an expansion bay, which are configured via the 4100ES Programmer. Each display module contains between 8 and 24 switches and LEDs, each one separately configurable.

User interface functionality is driven by the 64/64 LED/Switch Controller Card, which mounts behind two of the display modules (in positions 1 and 2). The types of modules typically used in 4100ES-S1 are as follows:

- 4100-1288 LED/Switch Controller Card with mounting plate.
- 4100-1289 LED/Switch Controller Card (no mounting plate; it mounts on the expansion space of 4100-1288).
- 4100-1282 Display Card. With one red and one yellow LED per switch, this is used for Alarm Zone Facility displays.
- 4100-1294 Slide-In Label Kit - one per 4100ES-S1 cabinet
- ME0456 Fan Control Module

Each 4100-1288 or 4100-1289 LED/switch controller supports up to 64 LED indicators and 64 switch controls. Using the 4100-1282 Display Card for zone displays, this corresponds to 32 zones per controller.

Other display cards are available for special display functions. Special configuration is required to use other display cards. Contact your Simplex dealer for guidance.

Step 6. Installing LED/Switch Modules into Expansion Bays, Continued

The LED/Switch User Interface

Figire 2-11shows an LED/switch bay from the user's perspective.

Figure 2-11. LED/Switch Modules

The LED/switch controller card is a 4100 slave that mounts behind two LED/switch modules. Each LED/switch controller handles up to 64 switches and 64 LEDs on the modules and communicates their status to the 4100ES CPU. This is sufficient for 32 zones.

Figure 2-12. LED/Switch Controller
The standard configuration of 4100ES-S1 uses 4100-1282 cards for zone displays, with programming so that pressing any switch toggles the Isolate state of the corresponding zone.

Step 6. Installing LED/Switch Modules into Expansion Bays, Continued

LED/Switch

 Controller Card, (continued)
Configuring the LED/Switch Controller Card

Mounting
 LED/Switch Modules to the Expansion Bay

If more than 32 zones are required, a second controller (4100-1289) will be required.

Note that an ME0456 fan control module counts as 8 zones when adding up the controller requirements.

LED 1. This LED illuminates if communication loss between the controller and the CPU occurs. It is independent of jumper P1 (which configures different communication loss features).

The 64/64 LED/switch controller requires physical configuration, but the LED/Switch modules do not. Switch controller configuration consists of setting jumper P1 and setting the card address. See Figure 2-12. In the 4100ES-S1, the first display controller is address 3 and the second has address 4. Card addressing is covered in Appendix A.

Refer to Figure 2-13 to mount the display cards to the front of the expansion bay.

Figure 2-13. LED/Switch Card Mounting

Step 6. Installing LED/Switch Modules into Expansion Bays, Continued

Mounting the Additional LED/ Switch Controller Card

Refer to Figure 2-14 and the instructions below to mount the LED/switch controller card assembly to the back of one of the LED/switch cards.

1. Use four 322-123 nuts and four 268-009 bay washers to secure the 637-141 bracket to the inside front of the expansion bay. Note that there is only one location where the bracket can be mounted, as shown in Figure 2-13.
2. Attach the header connector on the back side of the controller (P4) to the P1 (In) connector on the back side of the first LED/switch modules.
3. Secure the controller card to the board using four $6 / 32$ " x $1 / 4$ " Torx screws, as shown in Figure 2-14.

Figure 2-14. Controller Card Mounting
The second Controller Card (4100-1289) is mounted in the spare space on the same bracket.

Step 6. Installing LED/Switch Modules into Expansion Bays, Continued

LED/Switch Modules

Wiring Instructions

All types of modules are mounted to the front of a bay, and are connected to each other via a ribbon cable. Each module operates by the same rules: when a button is pressed, the controller card sends the CPU the information, and the action programmed for that button occurs.

To interconnect display cards and connect the controller card to a power source:

1. Use harness 734-008 to connect P2 on the controller card to one of the 4-pin connectors on the PDI. See Figure 2-15.
2. If there are two controller cards, use harness $734-036$ to connect P3 on the first controller card to P2 on the second controller card. The order does not matter.

Connect P4 of the controller to P1 of the left-most display module, with the ribbon cable provided (the first two display modules are fitted in the factory). Connect P2 of this display module to P1 of the next module, up to a maximum of four modules. Repeat for the second controller, if fitted.

Figure 2-15. LED/Switch Controller Wiring (approximately as viewed on the rear of the open bay door)

4100ES Fan Control Module

\{xe "service port: software modes"\}\{xe "software modes"\}

Overview

Labelling

Mounting \& Connection

The ME0456 is a 4100ES style Switch/LED display module designed specifically for fan control. It complies with the requirements of AS 1668.1:1998. It has rotary switches and LEDs for 4 sets of fans. In order to accommodate the required rotary switches, the front plate is joggled forward so that it protrudes through the trim. \{xe "service port: software modes"\}\{xe "software modes"\}

The Fan Control switch positions of ON, AUTO and OFF, are permanently marked on the faceplate label, as required by AS 1668. The name area accommodates 3 rows of 6 letters at 5 mm .

The labelling of the LEDs, ON, FLT, and OFF is marked on the removable fan name label card, LB0605, supplied with the module.

The card may be reversed and different LED labelling used, e.g. for damper controls.
A template version of this label is available as LB0605. This template allows entry of the fan name on a PC for local printing. LED names may also be revised.

The Fan Control module mounts to the frame of the 4100ES-S1 Expansion bay door from the front, in a similar fashion to display modules. Mounting nuts and washers are provided.

Connection from "Out" of the adjacent Switch/LED module (or 64/64 Controller if it is the first module on that Controller) to "In" on the module is by the flat flexible cable provided (166-226). \{xe "service port: software modes"\}\{xe "software modes"\}

The module is programmed as a standard 8 Switch/16 LED module. Up to four modules can be driven by one 64/64 Switch/LED Controller.

Each fan control with one rotary switch uses two of the 8 "switches", and 3 of the 16 LEDs of an 8 Switch/16 LED module as per Table 2-2. The other 4 LEDs are not fitted so must not be programmed, since it serves no purpose.

Table 2-2. Switch/LED Format

Fan Control	Switches	LEDs		
		ON	FLT	OFF
1	SW1, SW2	LD1	LD2	LD3
2	SW3, SW4	LD5	LD6	LD7
3	SW5, SW6	LD9	LD10	LD11
4	SW7, SW8	LD13	LD14	LD15

The switch functions for Fan Control 1 are shown in Table 2-3. The state of having both switches closed is not physically achievable.

Table 2-3. Switch Status

SW1	SW2	Fan Control Status
Closed (up)	Open (centre)	On
Open (centre)	Closed (up)	Off
Open (centre)	Open (centre)	Auto

Continued on next page

Figure 2-16. ME0456 Fan Control Module

Installing Other Modules

Detailed installation instructions for these modules can be found in these instruction documents. A copy of the appropriate document is supplied in the kit with each module.

Table 2-4. Module Installation Documents for 4100ES-S1

Part Code	Description	Installation Instruction
4100-3101AU	IDNET module provides an additional IDNET loop, with up to 250 devices. This is a PDI card.	574-800
4100-3107AU	IDNET+ module provides 1, 2, 3 or 4 additional IDNET loops with independent fault isolation. The total number of devices on these loops can be up to 246. This is a PDI card.	579-786
4100-3003	8 point relay module with 8 input points as well. Relay outputs are each a single changeover contact rated at 3 A at 30 V . This is a legacy card.	579-220
4100-3204	4 point relay module with 4 input points as well. Relay outputs are each a pair of changeover contacts rated at 2 A at 30 V . This is a PDI card.	
4100-3206	8 point relay module. Relay outputs are each a pair of changeover contacts rated at 3 A at 30 V . There are no feedback inputs. This is a PDI card.	
4100-5004	8 zone module providing 8 conventional detector circuit interfaces. This is a legacy card.	579-205
4100-0113	Dual RS-232 serial interface, providing two independent serial ports for connection printers, modems, or other $3^{\text {rd }}$ party equipment. This is a legacy card.	572-221
4100-0154	VESDA High Level Interface. This is a dual serial interface customized to connect to a VESDA and communicate compatible status and control messages. This is a legacy card.	574-050
4100-0302	24 point Graphic I/O module provides 24 configurable inputs or outputs for direct connection, e.g., zone displays. This is a legacy card.	LT0298
4100-3024	24 point Graphic I/O module provides 24 configurable inputs or outputs with relay isolation, e.g., fan controls, BMS interfaces. This is a legacy card.	

Chapter 3 Networking

\{xe "Network 4100 Fire Alarm System"\}

Introduction

In this Chapter

A basic 4100ES-S1 system becomes a network node when a Network Interface Card (NIC) or other compatible network card is installed and connected to another network node. How network cards connect to each other depends on the type of media cards being used.

Refer to the page number listed in this table for information on a specific topic.

Topic	See Page \#
Network Configuration	$3-2$
Introduction to the 4100 Network Interface Card (NIC)	$3-4$
Step 1. Configuring Network Cards	$3-7$
Step 2. Mounting Media Cards to the NIC	$3-9$
Step 3. Mounting Network Cards in the 4100ES-S1	$3-9$
Step 4. Wiring Network Cards	$3-10$

\qquad

Network Configuration

Overview

Ring and Star Configurations

Multiple 4100ES-S1 panels can be connected together into a network system by using network interface cards (NICs). When a NIC is installed into a 4100ES-S1, it is used to connect to other network nodes. Nodes may consist of other 4100ES-S1 or 4100ES panels, or they may be other types of node such as Graphic Command Centre (TSW), or Visual Command Centers (VCCs). A node is a self-sufficient CPU that controls appliances and devices, and which also has the capability of controlling and communicating with other nodes.

\{xe "4100 Fire Alarm System: network (overview)"\}\{xe "Network 4100 Fire Alarm System: about"\}

\{xe "Network 4100 Fire Alarm System: hub configuration"\}\{xe "Network 4100 Fire Alarm System: ring configuration"\}\{xe "Network 4100 Fire Alarm System: star configuration"\}\{xe "hub configuration"\}\{xe "ring configuration"\}\{xe "star configuration"\}The network configuration supports two common architectures or wiring configurations: ring or star. A networked system can also use a combination of the two.

The ring configuration consists of a number of nodes connected in a closed loop. The star configuration consists of several nodes connected directly to one common node. Physical bridge cards are used for the star configuration. Physical bridges reduce the amount of wire that would otherwise be needed to connect all nodes in a loop, and therefore cut down on system response time. However, the ring configuration is more secure against cabling faults. A combination of the two styles is illustrated in Figure 3-1.

Figure 3-1. Ring/Star Configuration Example

Network Configuration, Continued

Connecting Loops
Network rings or loops can be joined via physical bridge cards. There may be no more than two network loops connected in tandem. For every two loops that are interconnected (using one physical bridge), there can be a maximum of three other physical bridges used in a star configuration. See Figure 3-2.\{xe "Network 4100 Fire Alarm System: physical bridge (overview)"\}\{xe "physical bridge: connecting loops with"\}\{xe "Network 4100 Fire Alarm System: loops"\}

Figure 3-2. Interconnected Loop Configuration

System Design

To be used as a network node, a 4100ES-S1 panel must contain the following:

- CPU\{xe "Network 4100 Fire Alarm System: system design"\}
- System Power Supply
- 4100-6014 Network Interface Card plus two Media Cards

This chapter describes how to turn a basic 4100ES-S1 into a network node. This process consists of the following:

Step 1. Mounting media cards to the network interface card (NIC)
Step 2. Mounting the network cards in the panel
Step 3. Wiring between panels
Each step is described in this chapter. Before beginning the installation, review the next few pages for a detailed description of network cards and the media cards that mount onto them.

Introduction to the 4100 Network Interface Card (NIC)

The Network Interface Card (NIC) is a slave card that uses the standard 4100 serial bus to communicate with the CPU. The NIC connects 4100ES-S1 and other panels in a network, providing communication between each panel via fibre or shielded twisted pair cable.

The NIC is designed to be connected in a loop or ring arrangement, so that a single cable fault does not cause the entire system to fail. The ring arrangement provides the most secure and fault-tolerant wiring possible.

Two types of media boards can be used with the NIC card.

- The Fibre optic Media Card uses multimode optical fibres to connect network nodes. This can be used for electrically noisy environments or for connecting externally to other buildings.
- The Wired Media Card is used in all other types of applications. This uses ordinary screened paired cable to connect network nodes.

Up to two media boards can be plugged onto each NIC. The same NIC can use a combination of two types of media boards (for example, a NIC may have a wired media card connected to port 1 and a fibre optic media card connected to port 2).

Introduction to the 4100 Network Interface Card (NIC), Continued

Network Module illustrations

Figure 3-3. 4100-6014 Network Interface Card
\{xe "network interface card (NIC): LEDS"\}
NIC Card LED Indications

The 4100-6014 NIC has the following LEDs:
LED1 (yellow). Illuminates when

- The host CPU requests it to illuminate
- A transmission fails
- It is off-line with the host CPU
- It needs to be ronfigured

LED2 (red). Illuminates when a data ' 0 ' is received at the right port.
LED3 (green). Illuminates when a data ' 0 ' is transmitted at the right port.
LED4 (red). Illuminates when a data ' 0 ' is received at the left port.
LED5 (green). Illuminates when a data ' 0 ' is transmitted at the left port.

Introduction to the 4100 Network Interface Card (NIC), Continued

NIC Media Cards
There are two media cards that can be plugged into the 4100-6014 NIC:

- 4100-6057 Fiber-Optic Media Card (565-261)
- 4100-6056 Wired Media Card (565-413)
\{xe "media cards"\}\{xe "fiber-optic media card"\}\{xe "wired media card"\} Each module is shown below.

Figure 3-4. The 4100-6057 Fiber-Optic Media Card

Figure 3-5. The 4100-6056 Wired Media Card
\{xe "wired media card: about"\}

Introduction to the 4100 Network Interface Card (NIC), Continued

\{xe "wired media card: specifications"\}\{xe "fiber-optic media card: specifications"\}\{xe "network interface card: specifications"\}\{xe "modem media card: specifications"\}

Requirements and Limitations

Table 3-1. 4100 NIC \& Media Cards - Electrical and Environmental Specifications

Electrical Specifications	
Network Interface Card	Startup, no media cards: 8 VDC @ 110 mA Nominal, no media cards: 20 to 32 VDC @ 0 mA
Fiber Media Card	Using 24 V power supply: 20 VDC @ 140 mA max. Using 5 V power supply (GCC/NPU): 5 VDC @ 130 mA max.
Wired Media Card	4.75 to 5.25 VDC @ 170 mA max.
Environmental Specifications (All Modules)	
Operating Temperature	32° to $120^{\circ} \mathrm{F}$ (0° to $50^{\circ} \mathrm{C}$)
Humidity	10% to 93% relative humidity at $32^{\circ} \mathrm{C}$

Step 1. Configuring Network Cards

	\{xe "network interface card (NIC): configuring"\}xe "modem media card: configuring"\}xe "card configuration: network interface card (NIC)" $\}$ xe "card configuration: modem media card"\}xe "wired media card: configuring" Xxe "card configuration: wired media card"\}
Overview	The NIC card, along with each media card, all have jumpers that must be set as shown below.
CPU Motherboard Jumper Settings	NIC-compatible jumper settings on CPU motherboards depend on which motherboard is used.
	Motherboard 566-227 (normally used in 4100ES-S1): P10: Port 1 settings. P11: Port 2 settings. - P10/P11 position 1 - 2: Network card (NIC) attached to CPU motherboard (default). - P10/P11 position 2 - 3: RS-232/2120 card attached to CPU motherboard. Motherboard 565-274: - JW1 and JW2 must be installed. - Jumper plugs P5-P8 must not be installed.
NIC Card Address Setting	Use SW2 to set the NIC card address. Refer to Appendix A for the address table. \{xe "wired media card: about"\}

Step 1. Configuring Network Cards, Continued

NIC Card Jumper Settings

Wired Media Card Jumper Settings

There are two jumper settings on the NIC card: P3 and P4.
P3: Determines the NIC data transmission rate, 57.6 kbits/second or 9600 bits/second.

- Position 1 - 2 (the right two pins) or no pins jumpered: 57.6 kbits/second (default for 4100ES-S1).
- Position 2 - 3 (the left two pins): 9600 bits/second.

P4: Determines the data protocol, 8-bit or 9-bit, that the NIC card is using.

- Position 1 - 2 (the right two pins) or no pins jumpered: 9-bit (default for 4100ES-S1).
- Position 2 - 3 (the left two pins): 8-bit.

All settings are labelled on the card.

P2: Tells the system which wire type is to be used.

- Positions $1-2,5-6$, and $7-8: 0.8 \mathrm{~mm}$ shielded, twisted pair wiring.
- Remove all jumpers to specify 0.2 mm unshielded twisted pair telephone cable wiring.

IMPORTANT: When using the wired media card, the Earth fault detection is performed on the left port only. Remove R1 (1 Ohm resistor) from the wired media card on the right port.

Step 2. Mounting Media Cards to the NIC

\{xe "network interface card (NIC): mounting media cards to"\}\{xe "modem media card: mounting to NIC"\}\{xe "mounting: fiber-optic media card to NIC"\}\{xe "mounting: modem media card to NIC"\}\{xe "mounting: wired media card to NIC"\}\{xe "fiber-optic media card: mounting to NIC"\}\{xe "wired media card: mounting to NIC"\}

Overview

Media Card Mounting

The 4100-6014 Network Interface Card (NIC) uses media cards to connect to other NICs. This section describes how the media cards are mounted onto NICs.

NICs connect to each other via the two types of media cards. The types of media cards in the right and left ports are determined by the type of wiring that is being used between cards.

Connect P1 on the wired media card, or J1 on the fibre media cards, to P5 (the left port) on the NIC.

To connect a second media card to the same NIC, connect it as described above, but use P6 (the right port) on the NIC. Note that any two types of media cards can be connected to the same NIC.

Figure 3-6. Media Card Mounting

Step 3. Mounting Network Cards in the 4100ES-S1

The 4100 NIC daughter card inserts into motherboards as follows:

- If the 566-227 CPU Motherboard (default for 4100ES-S1) or 565-275 CPU Motherboard is used, the NIC daughter card is inserted into connector J2.
- If the 565-274 CPU Motherboard is being used, the NIC daughter card is inserted into connector J1.

Step 4. Wiring Network Cards

Overview
Wiring Guidelines

The nodes in the network now have to be wired together, so that the NIC in one host panel connects to the NIC in the next panel.
\{xe "network interface card (NIC): wiring"\}\{xe "wiring: network interface card (NIC)"\}
Refer to the following guidelines field wiring

General

- Network nodes must be wired from right port to left port, regardless of the media type selected.
- Best protection is achieved by wiring the nodes in a loop fashion. A single fault (except an Earth fault) will cause the network to reconfigure for degraded operation. A second fault (except an Earth fault) will result in the network dividing into two separate networks
- It is permissible to use mixed media in a network. For example, some spans may be wired media while others are optical fibre.
- Each NIC has a jumper for selecting between network data rates of 57.6 kbps and 9.6 kbps. All cards in the network must be set for the same rate. When physical bridging is used, the data rate must be set to 9.6 kbps .
- Each NIC has a jumper for selecting between 8- and 9-bit network protocols. All cards in the network must be set for the same network protocol. When physical bridging is used, the protocol must be set to 9-bit.

Wired Media

- Earth fault detection is performed on the left port only. When a network Earth fault occurs, the trouble is reported on the node whose left port is connected to the earthed section.
- All $0.8 \mathrm{~mm}^{2}$ wiring used Wired Media Cards must be shielded twisted-pair. All $0.2 \mathrm{~mm}^{2}$ (telephone cable) used must be twisted pair. When shielded cable is used, the shield must be terminated to chassis Earth on the left port only.
- All network wiring except the shield is supervised and power limited.
- When wiring leaves the building, 2081-9044 Overvoltage Protectors should be connected at the entry point. One overvoltage protector is installed where wiring leaves the building; another is installed where wiring enters the next building.

Fibre optic

- All fibre cables must be multimode, graded index type. ST style connectors must be used. No physical strain should be put on the cables. There must be no cable bends of less than a 50 mm radius.
- Two methods are available for joining fibre cable. Splices provide a permanent, very low loss, fibre-to-fibre connection. Couplers provide temporary connection between two ST style connectors with a loss of 1.2 dB . Both methods are permitted on a fibre network.
- Maximum line lengths for 50/125 and 62.5/125 cable are shown in Table 3-2.

Step 4. Wiring Network Cards, Continued

Wiring Distances

Maximum wiring distances are shown in Table 3-2.
Table 3-2. Wiring Distances

Media Type	Size	Data Rate	Max Distance
Wired	$0.2 \mathrm{~mm}^{2}$ unscreened twisted pair	57.6 kbps	2,100m
		9.6 kbps	3,600m
	$\begin{gathered} 0.8 \mathrm{~mm}^{2} \\ \text { screened twisted } \\ \text { pair } \end{gathered}$	57.6 kbps	3,000m
		9.6 kbps	5,200m
Optical Fibre	50/125 um (4dB/km loss)	57.6 or 9.6 kbps	3,000m
	50/125 um (3dB/km loss)		4,500m
	62.5/125 um (4dB/km loss)	57.6 or 9.6 kbps	4,000m
	$\begin{gathered} \text { 62.5/125 um } \\ \text { (3.75dB/km loss) } \end{gathered}$		4,600m

Notes:

- $0.8 \mathrm{~mm}^{2}$ fire-rated screened twisted pair cable must not have more than $190 \mathrm{nF} / \mathrm{km}$ capacitance or $21 \Omega / \mathrm{km}$ resistance.
- $0.2 \mathrm{~mm}^{2}$ unshielded twisted-pair telephone cable must not have more than $72 \mathrm{nF} / \mathrm{km}$ capacitance or $84 \Omega / \mathrm{km}$ resistance.
- Between any two connected network nodes, $\mathrm{L}+$ of one node connects to $\mathrm{R}+$ of the other, and L- connects to R-.

Step 4. Wiring Network Cards, Continued

Fibre-Optic Wiring	Connectors U1 (transmitter) and U2 (receiver) on the 4100-6057 Fiber-Optic Media Card are used to connect 4100-6014 NICs across parts of a network. \{xe "network interface card (NIC): wiring, fiber-optic"\}\{xe "wiring: fiber-optic media card"\}\{xe "fiber-optic media card: wiring"\} Note: ST connectors with long strain relief boots must be used with the fibre optic cable.
Fibre Optic	
Connection Types	Dual Fibre Optic Cable Connections. The standard fibre optic connection between network nodes uses two fibre optic cables, one for transmit and the other for receive. This connection allows for optimum communications distance.
The available communications distance is determined by the properties of the specific fibre cable used. Distances can be determined using the information and examples shown below in Table 3-3.	
Between any two connected network nodes, U1 (transmit) on the Fibre Media card of one node is connected to U2 (receive) of the Fibre Media card of the other node, i.e., the fibres "cross over" between nodes.	
Single Fibre Optic Cable Connections. For applications where a single fibre cable is available, or where use of a single cable is desired, using a model 4190-9010 Bi-Directional Coupler at each node combines the separate transmit and receive signals into a single path (refer to the requirements list).	
This connection allows use of a single fibre cable, but it does reduce communications distance as indicated in the information and examples shown below in Table 3-4.	
At each node, U1 (transmit) of the Fibre Media card must be connected to the transmit	
port of the coupler, and U2 (receive) to the receive port of the coupler.	

Step 4. Wiring Network Cards, Continued

4190-9010 Coupler Requirements

The 4190-9010 Coupler is used with the 4100-6057 Fibre Optic Media Board, revision "C" or higher. Two 4190-9010 Bi-Directional Couplers are required per connection, one at each node.
\{xe "fiber-optic media card: wire distances"\}\{xe "fiber-optic media card: coupler requirements"\}
The 4190-9010 is equipped with type ST connectors. To make type ST to type ST connections, an ST to ST coupler, by others, is required. ST to ST Couplers are available from:

Black Box, part \# FO200
Fiber Instrument Sales, part \# F1-8101
Newark Electronics, part \# 95F2097
(or equivalent)

Table 3-3. Dual Fibre Optic Cable Communications Distance Examples

Fibre Type $^{1^{*}}$	MIFL 2	Power Margin	Distance 3	Budget 3
50/125 numerical aperture $=0.2$	$4 \mathrm{~dB} / \mathrm{km}$	4 dB	3 km	17 dB
	$3 \mathrm{~dB} / \mathrm{km}$	3 dB	4.6 km	
$\mathbf{6 2 . 5} / \mathbf{1 2 5}$ numerical aperture $=0.275$	$4 \mathrm{~dB} / \mathrm{km}$	4 dB	3.75 $\mathrm{~dB} / \mathrm{km}$	3 dB
	21.4 dB			

*See notes at bottom of page.

Table 3-4. Single Fibre Optic Cable Communications Distance Examples Using 4190-9010 Bi-Directional Couplers

Fibre Type ${ }^{1}$	MIFL ${ }^{2}$	Power Margin	Distance ${ }^{3}$	Budget ${ }^{3}$	4190-9010 Coupler Loss	ST to ST Coupler Loss
50/125 numerical aperture $=0.2$	$3 \mathrm{~dB} / \mathrm{km}$	2 dB	2.33 km	21.4 dB	9.4 dB	3 dB
62.5/125 numerical aperture $=0.275$	3.2 dB/km		2.5 km			2 dB

Notes for Tables Above:

1. Cable specifications are for 50 or 62.5 um core with 125 um cladding, multi-mode graded index fibre. Wavelength $=850 \mathrm{~nm}$.
2. $\mathrm{MIFL}=$ Maximum Individual Fibre Loss. Numbers shown are for example reference only, refer to specific cable for exact specification.
3. Maximum cable length is determined by distance listed or by reaching budget value, whichever is shorter. Maximum distances listed for dual fibre cable are shorter than would be calculated. Budget using 4190-9010 Bi-Directional Coupler is the same with either size cable because the coupler input cables are 62.5/125 um fibre allowing launch power to be the same.

Step 4. Wiring Network Cards, Continued

4190-9010 Coupler Requirements (continued)

The illustration below shows coupler wiring.\{xe "fiber-optic media card: coupler requirements"\}\{xe "wiring: coupler for fiber-optic media"\}

Figure 3-7. Coupler Wiring

Refer to the guidelines and figures in this topic to use wired media cards. \{xe "network interface card (NIC): wiring, with wired media"\}\{xe "wiring: wired media card" \{xe "wired media card: wiring"\}
IMPORTANT: TB1 on the wired media card must not be used when it is connected to the 4100-6014 NIC.

- When the 4100-6056 (565-413) Interface Card is used with the 4100-6014 Network Card, TB1 on the Interface Card cannot be used. Network wiring must be connected to the motherboard as shown.
- The shield should only be connected at one end of the line. The shield is connected to the left port.
- Each cable requires two ferrite beads, one at each end. Refer to Figure 5-1 for bead wiring. Beads can be ordered as 4100-5129 (set of three).
- When wiring leaves the building, 2081-9044 Overvoltage Protectors are required. One overvoltage protector is installed where wiring leaves the building; another is installed where wiring enters the next building.

Table 3-5. 566-227 CPU Motherboard Wired Media Connections

CPU Motherboard Port for Media Card Connected to P5	Wired Media Card Connection (Left Port)
TB1-4	0 V
TB1-5	Earth ground
TB1-6	INV (-)
TB1-7	None
TB1-8	NONINV (+)
CPU Motherboard Port for Media Card Connected to P6	Wired Media Card Connection (Right Port)
TB3-1	NONINV (+)
TB3-2	Reserved
TB3-3	INV (-)
TB3-4	Earth ground
TB3-5	0 V

Step 4. Wiring Network Cards, Continued

Wiring with the Wired Media Card (continued)

Figure 3-8 shows how to connect between two CPU motherboards with wired media network cards. The right port terminals (TB3) on one 4100ES-S1 are connected to the left port terminals (TB1) of the other 4100ES-S1. Table 3-5 details the screw terminals on the CPU motherboard.

Figure 3-8. Wired Media Interconnection between CPU Motherboards in different panels

Step 4. Wiring Network Cards, Continued

Loop Wiring, mixed Fibre and Cable
\{xe "wiring: fiber-optic media card"\}\{xe "fiber-optic media card: wiring"\}Figure 3-9 shows an example of loop network cabling using a mixture of fibre optical cable and twisted pair. Note that the left port of any network card is connected to the right port of the next network card regardless of whether the connection is fibre or copper.

Figure 3-9. Example of Ring/Loop NetworkWiring

Chapter 4 The System Power Supply \& Alarm Relay Card

Introduction

In this Chapter

The system power supply (SPS) is described in Chapter 2. A picture of it is shown in Figure 2-4.

This chapter has the current and voltage ratings of the SPS and describes how it is installed and configured by the factory. It also describes the Alarm Relay Card that mounts onto the SPS to provide three extra relays.

Field wiring of the SPS is covered in Section 5.

Refer to the page number listed in this table for information on a specific topic.

Topic	See Page \#
SPS Specifications	$4-2$
SPS Adjustments	$4-4$
SPS LED Indications	$4-5$
Troubleshooting an SPS	$4-6$
The Alarm Relay Card	$4-7$
Brigade Interfaces	$4-9$

SPS Specifications

Input/Output/Battery Specifications

Table 4-1 summarizes the specifications for the SPS.\{xe "system power supply (SPS): specifications"\}

Table 4-1. SPS Input and Output Specifications

AC Input Specifications		
SPS in Basic 4100ES- S1 (4100-9848AU)	240 VAC + 6\% -10\% @ 50 Hz 2 A Maximum	
DC Output Specifications		
Voltage	Nominal 28VDC Minimum: 19.5 VDC Maximum: 32 VDC Ripple: 2 VDC p-p @ full load (9A)	
Total Current (max) 24V Card 24 V Aux Each NAC (total A+B)	9A alarm load. Includes: NACs; +24V Card; +24 V Aux; SPS card including on-board IDNet. 5A non-alarm load. Includes the above allowances, and allows for battery charging at high rate.	udes: NACs; +24V Card; including on-board IDNet. Includes the above ww for battery charging at oad (when used as AUX
SPS IDNet Output	30 V or 35 V (see note below)	
Battery Charger Specifications		
Input Voltage Range	21-33 VDC	
Output Float Voltage	$27.3 \mathrm{VDC} \pm 200 \mathrm{mV} @ 20^{\circ} \mathrm{C}$, temperature compensated at approximately $-36 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ ($0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$)	
Supervision Voltages (nominal at $20^{\circ} \mathrm{C}$)	Charger High Charger Low Battery Low Battery Depleted	$\begin{aligned} & 28.4 \mathrm{Vdc} \\ & 26.2 \mathrm{Vdc} \\ & 24.3 \mathrm{Vdc} \\ & 19.4 \mathrm{Vdc} \end{aligned}$
Output Current Limit	1.4 A (For 6.2 3.3 A (Default; for	Ah battery) 8-110 Ah battery)

Notes:

- AC power must be provided to the 4100ES-S1 from a dedicated AC branch circuit. The AC input is supervised wiring.
- The AC branch is terminated in the cabinet in the general power output (GPO) mounted in the expansion bay. The SPS plugs into the GPO via a 3-pin plug and mains lead.
- A mains fail fault is generated when the DC voltage drops below 20.3 V (nominally at mains voltage 204VAC).

SPS Specifications, Continued

- The bulk supply (rated at 9A max) which feeds 24 V Sig, 24 V Card, 24 V Aux also supplies the SPS Card including the on board IDNet, and the battery charger. The charger is disabled during alarms so as to make the 9A available on the other busses. (See Table 4-2 for the SPS current).
- $\quad+24 \mathrm{~V}$ Sig is used to supply the NACs. It can be made accessible for other use by configuring a NAC as an auxiliary power output (normally energized).
- The battery circuit is checked every 29 seconds. The battery test is programmed via custom control for a 1 hour test once per week.
- The battery is connected to the charger but is normally disconnected from the bulk supply. During mains fail or the 1 hour battery test, the battery gets connected to the bulk supply.
- The IDNet output is 30 V in the normal condition so as to prolong battery standby. When it is necessary to activate large numbers of output devices on IDNet peripherals (such as piezo sounders), the output voltage is increased to 35 V to provide sufficient voltage at the end of line to activate piezo sounders. The higher voltage state is an alarm condition for the purpose of standby battery calculation.

SPS Current Consumption

Table 4-2 summarizes battery standby capabilities for the SPS. Voltage assumed is 24 V , which is the rated battery voltage for lead-acid type batteries. \{xe "system power supply (SPS): specifications, current "\}\{xe "remote power supply (RPS): specifications, current "\}

Table 4-2. SPS Current Specifications

Standby Conditions	Current
- No alarms (NACs normal) - IDNet LED ON, no IDNet devices connected	175 mA
Add to above for each additional set of 50 IDNet devices in standby, with IDNet at 30 V	40 mA
Total current for fully loaded IDNet channel (250 devices) in standby	375 mA
Alarm Conditions	Current
- \quad IDNet LED ON, no IDNet devices connected Add to above for each set of 50 IDNet devices in alarm, 20 LEDs ON	185 mA
Add to above for each set of 50 IDNet devices in alarm, LEDs OFF	50 mA
Total current for a fully loaded IDNet channel (250 devices) in alarm, 20 LEDs ON	475 mA

Notes:

- Additional standby conditions: Trouble relay activated, power trouble LED on, IDNet LED on, battery charger off, auxiliary power load $=0 \mathrm{~mA}$
- Additional alarm conditions: Trouble relay activated, power trouble LED on, IDNet LED on, battery charger off, auxiliary power load $=0 \mathrm{~mA}$, NAC alarm load $=0 \mathrm{~mA}$, IDNet $=35 \mathrm{~V}$

SPS Adjustments

\{xe "system power supply (SPS): configuring "\}\{xe "remote power supply (RPS): configuring "\}\{xe "card configuration: system power supply (SPS)"\}\{xe "card configuration: remote power supply (RPS)"\}

Adjusting Voltages

There are two 4mm (i.e. small) potentiometers on the 4100-9848AU SPS, situated below the centre of the PCB. These are adjusted in the factory and typically will not need adjusting in the field.

If it is necessary to adjust them, turning the potentiometer clockwise increases the corresponding voltage.

R341 Battery Charger Voltage

Adjust this potentiometer to achieve a charger voltage of $27.3 \mathrm{~V} \pm 0.1 \mathrm{~V}$ at $20^{\circ} \mathrm{C}$.
(Allow $-36 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ for temperatures different to $20^{\circ} \mathrm{C}$). Disconnect the battery while making this adjustment, and measure the charger output at the SPS terminals. Reconnect the battery after making the adjustment.

R342 Voltage Measurement Calibration
Adjust this potentiometer to match the measurement of charger voltage on the panel LCD with that on a calibrated voltmeter measuring the charger output. Use the "Card Status"option of the menu. Match the two readings to within 0.1V.

Setting Jumpers and DIP Switches

See Chapter 2 "Step 3. Configuring Cards" for details of setting jumpers and DIP switches

SPS LED Indications

The SPS has the following LEDs:
\{xe "system power supply (SPS): LEDs"\}\{xe "remote power supply (RPS): LEDs"\}
LED1 (yellow). Illuminates when NAC 1 is ON or in Fault.
LED2 (yellow). Illuminates when NAC 2 is ON or in Fault.
LED3 (yellow). Illuminates when NAC 3 is ON or in Fault.
LED4 (yellow). Illuminates to indicate a communications loss with the system CPU; normally off.

LED5 (yellow). Indicates IDNet status. Normally off.

- Slow blink: Class A open circuit Fault.
- Fast blink: Short circuit Fault.
- On steady: No devices detected/ channel failure.

LED6 (yellow). Indicates power supply status. Normally off.

- Single blink: Positive earth fault.
- Double blink: Negative earth fault.
- Triple blink: Battery Fault.
- Quadruple blink: Charger Fault.
- On steady: Overcurrent fault.

LED7 (green). Illuminates when the power supply is powered from the AC line. Off when the power supply is de-energized, or when it is using battery backup power.

Troubleshooting an SPS

\{xe "system power supply (SPS): troubleshooting"\}\{xe "remote power supply (RPS): troubleshooting"\}\{xe "troubleshooting: SPS"\}\{xe "troubleshooting: RPS"\}

Overview
"IDNet Power Monitor Trouble"
"Extra Device"
"Class A Trouble"
"Earth Fault Search"
"Short Circuit"
"Channel Fail"
"No Answerl
Bad Answer"

"Output Abnormal"

Noisy Buzz from the SPS

This section contains explanations of fault messages associated with the SPS that may appear on the 4100ES-S1 display. Heading text in the left margin shows the error message, while the paragraph next to it describes the likely cause of the message.

There is no output voltage from the power supply. Refer to Chapters 2 and 5 for information on power supplies.

One or more extra devices, i.e., devices that have not been configured on the IDNet channel, are on the system. Only one message appears, regardless of the number of extra devices found.

There is an open circuit on the IDNet channel. A hardware reset of the system is required to reset the fault.

Comes up during the Earth Fault Search diagnostic function. Once the search is initiated, the front panel display indicates how far the search process has progressed ($10 \%, 25 \% \ldots$ 75%), and then shows the results of the search. The result either identifies the offending circuit or indicates that the earth fault could not be found. SPS circuits (IDNet, NAC, and aux power) are searched. System alarm and trouble processing is suspended during the search.

Appears when a short circuit is detected on the IDNet channel. This status clears automatically when the short circuit is removed.

Appears when at least one device on the IDNet channel has been configured, but no devices are communicating on the channel. This message does not appear if there are no configured devices on the IDNet channel.

Occurs when the 4100ES-S1 is put into a diagnostic mode and finds a device not responding, or responding unreliably.

Occurs when 24 V is not present on TrueAlarm devices or when TrueAlarm sensor bases with relay driver outputs are not properly supervised or when isolator devices are in isolation mode.

If the SPS frame is held together with \#6 screws, these may have loosened over time. Tighten these screws as required, taking care to avoid damage to any part of the panel. If cards need to be removed for access to the screws, power the panel down first (mains and battery).

The Alarm Relay Card

\{xe "system power supply (SPS): troubleshooting"\}\{xe "remote power supply (RPS): troubleshooting"\}\{xe "troubleshooting: SPS"\}\{xe "troubleshooting: RPS"\}

Overview
The Alarm Relay Card mounts on, and is driven by, the SPS. It has 3 relays, each providing one set of voltage-free contacts. It is fitted to the basic 4100ES-S1 as standard.

The relays are able to be configured under custom control, but the default operation is for system status, i.e. Fault (Trouble), Isolate (Supervisory), and Alarm, respectively. These are commonly used to drive the Brigade signalling device (ASE or PPU/AIU). See the next section for more details about Brigade Devices.

Figure 4-1. The Alarm Relay Card

Mounting

 (factory installed)The Alarm Relay Card mounts on the SPS adjacent to the largest relay K3. With the power disconnected, fit the card using the three plastic stand-offs and one Torx screw with plastic sleeve.

Connect P4 on the relay card to P7 on the SPS with the 10 way FRC provided.

The Alarm Relay Card, Continued

Configuration
The relays have one set of voltage-free contacts (see note below) connected to one pair of terminals via a header. The two terminals are configured for normally closed or normally open by positioning a jumper on the relay card. Refer to Table 4-3.

Table 4-3. Alarm Relay Card Jumper Positions

Relay	Header	Normally Closed	Normally Open
Alarm	P1	$1-2$ (top)	$2-3$ (bottom)
Isolate (Supervisory)	P2	$1-2$ (top)	$2-3$ (bottom)
Fault (Trouble)	P3	$1-2$ (top)	$2-3$ (bottom)

Notes

- The common contact of each relay has a transient suppressor to earth, and must not be used to switch voltages greater than its rating of 40 V .
- The common contact is protected with a 3 A fuse ($5 \times 15 \mathrm{~mm}$ type).
- For the default configuration, the relays are normally de-energised and energise on Fault/Isolate/Alarm.
- The corresponding LED illuminates when the relay is energized.
- The relays may be configured under custom control to operate other than the default actions.

Warning
If relay RL3 is configured for operation other than Fault (Trouble), jumper P3 on the SPS must be shifted to positions 1-2 (top).

Specification

CARD	
Input Voltage	20-32Vdc
Input Current	15mA @ 24V, quiescent
(nominal)	37mA @ 24V, all relays on
RELAYS	
Form	Voltage-free changeover, suppressors to earth
Voltage	30Vac, 32Vdc
Current	2A, resistive load
	FUSE
F1, F2, F3	5 x 15mm, Glass Cartridge, 3A

Brigade Interfaces

\{xe "service port: software modes"\}\{xe "software modes"\}

Overview

Format

Applications

Kit Contents

Door Mounting

The Alarm Relay Card is typically used to provide a Brigade Interface. The def\{xe "service port: software modes"\}\{xe "software modes"\}ault configuration is for the three relays to operate on Fault (Trouble), Isolate (Supervisory) and Alarm, respectively. \{xe "service port: software modes"\}\{xe "software modes"\}

These relays are normally de-energised\{xe "service port: software modes"\}\{xe "software modes" $\}$ and energise on the respective status. They have voltage-free contacts that are connected to two terminals and can be configured as normally open or normally closed by the positioning of links. Refer to the previous section for details.

If a normally energized relay is required to provide activation on complete loss of system power (Standby), the Aux Relay on the SPS can be programmed as normally on and its contacts connected in series/parallel with the contacts of the Fault (Trouble) relay as is applicable, i.e., series for normally closed, parallel for normally open. Where the Brigade interface is powered from the 4100ES-S1 and monitored by the central station, this is not typically required.

Note that if the Aux relay is programmed as normally energised, de-energising on Fault, it cannot be used to replace the Fault relay on the Alarm Relay Card as the latter is link connected to a hardware signal of "SPS CPU Fault", and signals "Fault" when the SPS loses communications with the CPU.
\{xe "service port: software modes"\}\{xe "software modes"\}
The 4100ES-S1 has specific mounting doors for several types of signalling device. The signalling devices must be obtained separately.

FP0935 FP,4100ES-S1 1976-174,ASE DOOR KIT

$1 \times 4 \mathrm{U}$ hinged door, with ASE cover and barrel nuts already fitted 1×3 way connector and 1×2 way connector for connection to the ASE when it is fitted
$1 \times$ FP0740 FAS interface module with red, yellow, blue and white wires
$1 \times$ pair of red and black wires for connecting the ASE to the 4100ES-S1 DC supply $4 \times$ M6 screws, washers and cage nuts for mounting the door $5 \times$ Cable ties and adhesive cable tie holders for fastening the ASE wiring 1 x green earth lead + nut and washers to earth the door to the expansion bay $2 \times \mathrm{M} 4 \times 16$ screws and crinkle washers to mount the ASE to the door

FP0937 FP,4100ES-S1 1976-174,PPU/AIU DOOR KIT
$1 \times 4 \mathrm{U}$ hinged door with spacer bracket, connector strip, label and wiring already fitted
$4 \times$ M6 screws, washers and cage nuts for mounting the door
$5 \times$ Cable ties and adhesive cable tie holders for fastening the PPU/AIU wiring
1 x green earth lead + nut and washers to earth the door to the expansion bay
$4 \times 3 / 8$ " PK screws for mounting the PPU on the spacer bracket
$4 \times 25 \mathrm{~mm}$ male/female barrel nuts for PPU mounting

Both types of brigade doors mount in the 4 unit space at the bottom of the 4100ES-S1 cabinet, using $4 \times$ M6 screws, washers and cage nuts. Cage nuts should already be fitted to the 4100ES-S1 and screws supplied with it, but there are spare screws, washers and cage nuts supplied with each kit in case the others have been lost.

Brigade Interfaces, Continued

General Wiring

AIU/PPU Mounting

AIU/PPU Wiring

ASE Mounting

The ASE or AIU/PPU should be powered from the fused DC distribution board on the power supply. It is recommended that the brigade device does not share its fuse protection with any other equipment, for reliability.

The wiring between the brigade device and the 4100ES-S1 should be routed neatly as shown in the following drawings, and secured in place with the cable ties and adhesive tie holders supplied with the kits.

Fit the protective earth lead between the quick-connect tap on the brigade interface door and an unused stud in the lower right end of the expansion bay, using the nut and washers supplied with this kit.

The AIU or PPU must be obtained separately. The FP0937 brigade interface door is supplied assembled ready to take an AIU, which is fastened directly to the spacer bracket by four screws supplied with the AIU.
To mount a PPU, the spacer bracket must be removed and reassembled using the extra supplied 25 mm male/female barrel nuts according to drawing 1901-267 sheet 2 (21U cabinet option). The PPU is fastened directly to the spacer bracket using four PK screws supplied with this kit.

The pre-fitted wiring must be connected to the Alarm Relay Card terminals as shown in 1901-267 sheet 2 . Set the three links on the Alarm Relay card to the NO positions for an AIU and the NC positions for a PPU. Note: the red wire has some extra length, for use in linking the terminals together as shown. Both AIU and PPU require extra wire links on the Alarm Relay terminals, and the PPU requires extra wire links on the connector strip on the door.

The ASE must be obtained separately. If it is supplied complete with a body, this must be removed before fitting the ASE to the door. The ASE is fastened to the brigade interface door with the two M4 screws and crinkle washers in the kit. The antenna socket should be fitted to the tab on the door below the ASE position. See drawing 1976-174 sheet 1 and the ASE installation instructions for details.

The FP0740 ASE FAS module must be connected to the Alarm Relay Card terminals and the 2 way ASE connector as shown in 1976-174 sheet 1 . Set the three links on the Alarm Relay card to the NC positions.

Chapter 5 SPS Field Wiring (4100ES-S1)

Introduction

In this Chapter
Refer to the page number listed in this table for information on a specific topic.

Topic	See Page \#
General Field Wiring Guidelines	$5-2$
SPS NAC Field Wiring Guidelines	$5-3$
Power Supply Wiring Distances	$5-6$
Using T-GEN 50 with 4100ES-S1	$5-8$
SPS Auxiliary Power Wiring	$5-16$
SPS Relay Wiring	$5-18$
SPS IDNet Wiring	$5-19$

General Field Wiring Guidelines

General Guidelines

- All field wires must be $0.75 \mathrm{~mm}^{2}$ or greater cross section and comply with AS 1670.1 and the wiring code.
- Conductors must test free of all earth leakage.
- All wiring must be done using copper conductors only, unless noted otherwise.
- If shielded wire is used,
- the metallic continuity of the shield must be maintained throughout the entire cable length.
- the entire length of the cable must have a resistance greater than 1 Megohm to earth ground.
- Underground wiring must be free of all water.
- Wires that run in plenum should be in conduit.
- A system ground must be provided for earth detection and lightning protection devices. This connection must comply with approved earth detection.
- Only system wiring should be run together in the same conduit.
- Use supplied ferrite beads with all SPS field wiring including the Aux 24 V . Loop wires twice through the supplied ferrite bead(s) as shown in Figure 5-1. (Extra can be ordered as 4100-5129 - 3 beads).

Figure 5-1. The Ferrite Bead

SPS NAC Field Wiring Guidelines

\{xe "wiring: distances, Class A (NAC)"\}\{xe "NACs: wiring distances (Class A)"\}\{xe "Class A wiring: distances (NAC)"\}

Overview

Guidelines

Each of the three NACs on the SPS has two pairs of driven outputs (A+/A-, B+/B-) which operate together.

NAC B outputs have polarity reversal supervision and expect a 10k EOLR. Each connected device must have a suitably rated blocking diode. EOLRs are supplied fitted to the NAC terminals.

NAC A outputs have an integral 10k to accommodate Class A (loop) wiring. Class A wiring is not mandatory under AS 1670.1.

Class B (string) wiring can only have one branch.
The 3A max rating applies to each NAC, B + A outputs combined under alarm conditions. NAC load current may be displayed on the LCD.

The Australian SPS has extra decoupling capacitors fitted to the NAC outputs, and cannot be used to drive the Simplex range of addressable appliances (Strobes).

NACs may be programmed to be normally on to allow the terminals to be used as power supply outputs. See the SPS Auxiliary Power Wiring section following.
\{xe "guidelines for wiring: NACs"\}\{xe "NACs: guidelines for wiring"\}\{xe "wiring: guidelines (NACs)"\}\{xe "NACs: guidelines for wiring"\}

Review the following guidelines for NACs before you begin NAC field wiring.

- All wiring must be $0.75 \mathrm{~mm}^{2}$ to $4 \mathrm{~mm}^{2}$.
- All wiring is supervised and power-limited.
- The maximum alarm current is 3 A per circuit. The supervisory current is 2 mA at 24 VDC .
- The nominal supply voltage rating is $24 \mathrm{VDC}, 2 \mathrm{~V}$ p-p ripple (maximum).
- The total available current from the SPS is 9A. Any current used for card power by modules plugged into the PDI, as well as any auxiliary 24 VDC current, must be deducted from the total 9A available current.
- Terminal designations " + " and "-" are for the Alarm state (ON), not the supervision state.
\{xe "guidelines for wiring: NACs"\}\{xe "NACs: guidelines for wiring"\}\{xe "wiring: guidelines (NACs)"\}\{xe "NACs: guidelines for wiring"\}

Allocations
The configuration templates supplied for use with the 4100ES-S1 all have these default assignments of the NAC outputs, with corresponding Custom Control equations.

- NAC1: Ancillary Control Facility (ACF), to control ancillary devices during an Alarm. This output can be isolated using the ACF Isolate control on the keyboard.
- NAC 2 : Fire Bell, to operate a bell as required by AS 4428.1. This output can be isolated using the Bells Isolate control on the keyboard.
- NAC 3: Warning System to operate devices such as T-GEN 50. This output can be isolated using the Warning System Isolate control on the keyboard.

SPS NAC Field Wiring Guidelines, Continued

Some or all of these output functions could be implemented using addressable devices or other relay modules instead, in which case the corresponding NAC output could be reassigned to other uses. The new configuration would require full testing of these functions to ensure compliance with AS 4428.1.

Class A (loop) NAC Wiring

To connect the SPS to reverse-polarity, non-addressable notification appliances using Class A wiring, read the following instructions and refer to the figure below. \{xe "wiring: Class A (NAC)"\}\{xe "Class A wiring: NACs"\}\{xe "NACs: wiring (Class A)"\}

1. Route wire from the "B+", "B-", outputs on TB2 of the SPS to the appropriate inputs on a peripheral notification appliance. Use NAC1, NAC2, or NAC3 as required.
2. Route wire from the first appliance to the next one. Repeat for each appliance.
3. Route wire from the last appliance to the A+ and A-inputs on the same NAC circuit of TB1 of the SPS.
4. Repeat steps 1 through 3 for each NAC output you want to use.
5. Leave the $10 \mathrm{~K}, 1 / 2 \mathrm{~W}$, brown/black/orange resistor (378-030) on each the "B+" to "B-" terminals of each unused NAC. No external end-of-line resistor is needed for circuits in use.
6. If the appliance/device to be used does not have an integral diode, a sufficiently rated blocking diode must be fitted between the incoming +ve wire and the +ve terminals of the device with cathode (stripe) to the device.

Important: Conductors must test free of all grounds.

Figure 5-2. Class A (loop) NAC Wiring

SPS NAC Field Wiring Guidelines, Continued

\{xe "wiring: Class B (NAC)"\}\{xe "Class B wiring: NACs"\}\{xe "NACs: wiring (Class B)"\}

Class B (string) NAC Wiring

To connect the SPS to appliances using Class B wiring, read the following instructions and refer to the figure below.

1. Route wire from the $\mathrm{B}+$, B - outputs on TB 2 of the SPS to the appropriate inputs on a peripheral notification appliance. Use NAC1, NAC2, or NAC3, as required.
2. Route wire from the first appliance to the next one. "T" tapping is not allowed since the spur will not be supervised. Repeat for each appliance.
3. Route wire from the last appliance to the supplied EOLR or a 4081-9008 EOL Harness ($10 \mathrm{~K} \mathrm{Ohm}, 1 / 2 \mathrm{~W}$; brown/black/orange).
4. Repeat steps 1 through 3 for each NAC output you want to use.
5. Leave the $378-030$ EOL Resistor ($10 \mathrm{~K} \mathrm{Ohm}, 1 / 2 \mathrm{~W}$; brown/black/orange) on each unused circuit. The circuit must connect "B+" to "B-" terminals.
6. If the appliance/device to be used does not have an integral diode, a blocking diode must be fitted between the incoming +ve wire and the +ve terminal of the device with the diode's cathode (stripe) connected to the device.

The illustration below shows Class B wiring.

Figure 5-3. Class B (string) Wiring

Power Supply Wiring Distances

\{xe "wiring: distances, Class A (NAC)"\}\{xe "NACs: wiring distances (Class A)"\}\{xe "Class A wiring: distances (NAC)"\}

Overview

Class A NAC Wiring Table

Before wiring from any type of power supply to notification appliances, check Tables 5-1 and 5-2 for wiring distances.

Table 5-1 lists the maximum distances from the NAC terminal block to the last appliance in a Class A (loop) configuration, depending on wire gauge and current. Use Table 5-1 to calculate wire distances for your application if you are using Class A wiring.

Table 5-1. Class A (Loop) Wiring Distances

Alarm Current @ 24V	$0.75 \mathrm{~mm}^{2}$	$1.00 \mathrm{~mm}^{2}$	$1.50 \mathrm{~mm}^{2}$	$2.50 \mathrm{~mm}^{2}$	$4.00 \mathrm{~mm}^{2}$	DC Resistance
0.25 A	120 m	150 m	230 m	380 m	620 m	6.0 ohms
0.50 A	58 m	77 m	120 m	190 m	310 m	3.0 ohms
0.75 A	38 m	51 m	77 m	130 m	210 m	2.0 ohms
1.00 A	29 m	38 m	58 m	96 m	150 m	1.5 ohms
1.25 A	23 m	31 m	46 m	77 m	120 m	1.2 ohms
1.50 A	19 m	26 m	38 m	64 m	100 m	1.0 ohms
1.75 A	16 m	22 m	33 m	55 m	88 m	0.86 ohms
2.00 A	14 m	19 m	29 m	48 m	77 m	0.75 ohms
2.25 A	13 m	17 m	26 m	43 m	68 m	0.67 ohms
2.50 A	12 m	15 m	23 m	38 m	62 m	0.60 ohms
2.75 A	10 m	14 m	21 m	35 m	56 m	0.55 ohms
3.00 A	10 m	13 m	19 m	32 m	51 m	0.50 ohms

Notes:

- \quad Max Distance $=$ distance from SPS to last appliance.
- This table is calculated at 49 degrees Centigrade.
- Distances are based on a 3V drop, and take into account the worst-case panel output voltage. These distances are based on the worst case of having one single load at the furthest point.
- If circuit integrity wire is used instead of housing cable in a fire-rated enclosure, reduce wiring distances by 12 m for every 3 m of potential exposure.

Power Supply Wiring Distances, Continued

\{xe "wiring: distances, Class B (NAC)"\}\{xe "NACs: wiring distances (Class B)"\}\{xe "Class B wiring: distances (NAC)"\}

Class B NAC Wiring Table

Table 5-2 lists the maximum distances from the NAC terminal block to the last appliance in a Class B (string) configuration, depending on wire gauge and current. Use Table 5-2 to calculate wire distances for your application if you are using Class B wiring.

Table 5-2. Class B (string) Wiring Distances

Alarm Current @ 24V	$0.75 \mathrm{~mm}^{2}$	$\mathbf{1 . 0 0 \mathrm { mm } ^ { 2 }}$	$\mathbf{1 . 5 0 \mathrm { mm } ^ { 2 }}$	$2.50 \mathrm{~mm}^{2}$	$4.00 \mathrm{~mm}^{2}$	DC Resistance
0.25 A	230 m	310 m	460 m	770 m	1200 m	12.0 ohms
0.50 A	120 m	150 m	230 m	380 m	620 m	6.0 ohms
0.75 A	77 m	100 m	150 m	260 m	410 m	4.0 ohms
1.00 A	58 m	77 m	120 m	190 m	310 m	3.0 ohms
1.25 A	46 m	62 m	92 m	150 m	250 m	2.4 ohms
1.50 A	38 m	51 m	77 m	130 m	210 m	2.0 ohms
1.75 A	33 m	44 m	66 m	110 m	180 m	1.7 ohms
2.00 A	29 m	38 m	58 m	96 m	150 m	1.5 ohms
2.25 A	26 m	34 m	51 m	85 m	140 m	1.3 ohms
2.50 A	23 m	31 m	46 m	77 m	120 m	1.2 ohms
2.75 A	21 m	28 m	42 m	70 m	110 m	1.1 ohms
3.00 A	19 m	26 m	38 m	64 m	100 m	1.0 ohms

Notes:

- \quad Max Distance $=$ distance from SPS to last appliance.
- This table is calculated at 49 degrees Centigrade.
- Distances are based on a 3V drop, and take into account the worst-case panel output voltage. These distances are based on the worst case of having one single load at the furthest point.
- If circuit integrity wire is used instead of housing cable in a fire rated enclosure, reduce wiring distances by 12 m for every 3 m of potential exposure.

Using T-GEN 50 with 4100ES-S1

Overview

Powering the

 T-GEN 50AS 1670.1 requires fire alarm warning systems to produce sounds complying with ISO 8201. One way of meeting this requirement in a 4100ES system is to use a TGEN 50 tone generator, which is capable of driving up to 50 W of load on a 100 V speaker line.

The recommended version of the T-GEN 50 for use in 4100ES-S1 is available as part 4100-0766K (see PID information in Chapter 1). This consists of a T-GEN 50 mounted on a metal bracket which is mounted into the expansion bay in the same way as a legacy 4100 motherboard. This part code includes the necessary mounting hardware.

The best place to mount this bracket is in the right-most free slot in the expansion bay, next to the mains socket bracket. The bracket should be installed with the T-GEN 50 facing to the left - this is "upside down" compared to some other uses of this bracket. Note also that the heat sink of the T-GEN 50 intrudes slightly into the space above the next slot to the left. This will probably clash with other motherboards or modules and make this slot unusable.

The T-GEN 50 must be continuously powered from nominal 24VDC, i.e., not just during Alarm conditions, so that it can supervise the 100 V speaker line.

The recommended method is to power the T-GEN 50 from the AUX POWER terminals of the SPS power supply. This output is rated at 2A, which is just sufficient to drive one fully loaded T-GEN 50. However, this leaves no reserve for any other equipment to be powered from these terminals, e.g., a brigade signalling device.

If 24 V DC is required for other ancillary devices as well, this can be supplied from one of the NAC outputs via the Fused Distribution Board PA0915. The wiring for this is shown in Figure 5-4.

Using T-GEN 50 with 4100ES-S1, Continued

Figure 5-4. Taking Ancillary Power from NAC1

To make this work, NAC1 must be programmed as AUXPWR to make it turn on continuously without supervision. The NAC output capacity is 2A overall.

In the current AS 4428 configuration template (SF0369), NAC1 is normally assigned to the Ancillary Control Facility (ACF). If NAC1 is used for an ancillary supply, and an ACF output is required, the AUX RELAY contacts on the SPS can be used. These provide a single clean set of changeover contacts, with no supervision or power. To make this work, the 4100ES configuration must be amended to control the Auxiliary Relay from ACF.

The T-GEN 50 should not be powered from a NAC output. T-GEN 50 draws a large inrush current when it is first turned on, which produces an "SPS Over Current" fault in the system that can only be cleared by pressing the 4100ES System Reset button. This is not acceptable operation.

Using T-GEN 50 with 4100ES-S1, Continued

Controlling a T-GEN 50 with a Relay Module

Figure 5-5. Relay Module Connection to a T-GEN 50

A T-GEN 50 can be operated and supervised using a 4100-3003 or 4100-3204 relay module. The relay module is used to control the ALM- input to the T-GEN 50 and to monitor the state of its Fault relay. The T-GEN 50 is configured to supervise the ALMwiring from the relay module and the 100 V wiring to the loudspeakers.

Figure 5.5 shows the wiring between the T-GEN 50 and a 4100-3003 relay module. The detail of the 24 V supply is not shown, but the T-GEN 500 V MUST be common with the 4100ES 0V (this will always be the case when using the AUX POWER supply, as described earlier).

Using T-GEN 50 with 4100ES-S1, Continued

T-GEN 50 Setting for Relay Operation

Table 5-3 shows the switch and link settings for T-GEN 50 software version 1.7 when controlled from a relay output.

Table 5-3. T-GEN 50 Settings

Alert to Evacuate Change-Over Time			
SW1 (T0)	SW2 (T1)	SW3 (T2)	Setting on T-GEN 50
OFF	OFF	OFF	0 sec
ON	OFF	OFF	30 sec
OFF	ON	OFF	1 min
ON	ON	OFF	1.5 min
OFF	OFF	ON	3 min
ON	OFF	ON	5 min
OFF	ON	ON	10 min
ON	ON	ON	Alert Only

SWITCH	Name	Setting on T-GEN 50
SW4	ALM I/P Supervision	ON (Supervision enabled)
SW5	ALM I/P	OFF (Non-latching)
SW6	Evac Tone	OFF
SW7		OFF for AS 2220 tone ON for ISO 8201 + Keywords
SW8	Evac Message	OFF for Evac Message 1 or Field Recorded message, ON for Evac Message 2 or Keywords only in ISO 8201

Link	Name	Setting on T-GEN 50
1	BIAS	FITTED if PA or Background Music not required.
2	MASTER	FITTED
3	REC EN	Fit to record message.
4	TEST	Fit for test tone during installation
5	SLAVE	NOT FITTED
6	SLAVE / MASTER	MASTER
7	FAULT $=$	RELAY

Using T-GEN 50 with 4100ES-S1, Continued

Controlling a
 T-GEN 50 from a NAC Output

A T-GEN 50 can be controlled and supervised using a NAC output. The NAC is used to control the ALM- input to the T-GEN 50 and to supervise its Fault relay output. The T-GEN 50 is configured to supervise the 100 V wiring to the loudspeakers.

Figure 5-6 shows the wiring between the T-GEN 50 and the NAC terminals.
The detail of the 24 V supply is not shown, but the T-GEN 500 V MUST be common with the 4100 ES 0 V (this will always be the case when using the AUX POWER supply as described earlier).

The NAC output must be programmed as a SIGNAL point type, so that it automatically operates on Alarm, and provides reverse polarity supervision to the $10 \mathrm{k} \Omega$ EOLR.

The configuration templates already have NAC3 programmed as a suitable output to drive the T-GEN 50.

Figure 5-6. NAC Connection to a T-GEN 50

Using T-GEN 50 with 4100ES-S1, Continued

T-GEN 50 Settings for NAC Operation

Table 5-4 shows the switch and link settings for T-GEN 50 software version 1.7 when controlling from a NAC output.

Table 5-4. T-GEN 50 Settings

Alert to Evacuate Change-Over Time			
SW1 (T0)	SW2 (T1)	SW3 (T2)	Setting on T-GEN 50
OFF	OFF	OFF	0 sec
ON	OFF	OFF	30 sec
OFF	ON	OFF	1 min
ON	ON	OFF	1.5 min
OFF	OFF	ON	3 min
ON	OFF	ON	5 min
OFF	ON	ON	10 min
ON	ON	ON	Alert Only

SW1 to SW3 settings have no effect on Slave T-GEN 50s.

SWITCH	Name	Setting on T-GEN 50
SW4	ALM I/P Supervision	OFF (Supervision disabled)
SW5	ALM I/P	OFF (Non-latching)
SW6	Evac Tone	OFF
SW7		OFF for AS 2220 tone ON for ISO 8201 + Keywords
SW8	Evac Message	OFF for Evac Message 1 or Field Recorded message, ON for Evac Message 2 or Keywords only in ISO 8201

Link	Name	Setting on T-GEN 50
1	BIAS	Can be FITTED if PA or Background Music not required
2	MASTER	FITTED
3	REC EN	Fit to record message.
4	TEST	Fit for test tone during installation
5	SLAVE	NOT FITTED
6	SLAVE / MASTER	MASTER
7	FAULT $=$ DEF-/RELAY	RELAY

Using T-GEN 50 with 4100ES-S1, Continued

Fitting an Evacuation Control

An optional three-position control ME0460 (see part numbers in Chapter 1) allows the TGEN 50 to be switched from the front panel between automatic operation, being Isolated, or producing Evacuation tone, regardless of the state of other control inputs.

With the control in the ISOLATE position, the T-GEN 50 will not respond to the ALMinput, nor activate its FAULT output if a fault is present. Note that this condition is not indicated on the 4100ES-S1 operator interface, so care must be taken when using this facility.

With the control in the EVAC position, the T-GEN 50 will immediately produce Evacuation tone.

Figure 5-7 shows how to connect an Evacuation Control to a T-GEN 50.
The control can be fitted to an FP0935 or FP0937 4U Brigade Interface door as used in 4100ES-S1, or fitted to a 4100-1279 blank display module (requires a 9.5 mm hole to be drilled in the display module - the ME0460 includes an installation guide with drilling details). See Figure 5-8 for example.

Figure 5-7. Wiring an Evacuation Controller to a T-GEN 50

The T-GEN 50 can be fitted with a compatible PA microphone, to allow voice announcements via the warning system. ME0490 is a suitable part for the 4100ES-S1 (see part numbers in Chapter 1)

A suitable recess or cavity is required for storing the microphone while not in use. The FP0935 and FP0937 4U Brigade doors have a suitable recess. See Figure 5-7 to see how the microphone fits and how its lead is routed inside the cabinet.

Using T-GEN 50 with 4100ES-S1, Continued

100V Speaker Wiring

Refer to the T-GEN 50 Installation and Operating Guide (LT0186) for details about the wiring of speakers and end-of-line resistor requirements for the T-GEN 50.

Figure 5-8. Examples of Evacuation Controls and PA Microphone

SPS Auxiliary Power Wiring

Overview

Guidelines

The panel, battery-backed, unregulated dc bulk power is available from the SPS via the NAC and the 24 V Aux power terminals. NACs can be configured as auxiliary power point type in the 4100ES Programmer. All of these are power-limited.

Review the following guidelines before using the SPS for auxiliary power. \{xe "wiring: SPS auxiliary power"\}\{xe "system power supply (SPS): wiring, auxiliary power"\}\{xe "auxiliary power: SPS"\}

- Voltage rating: 24 VDC (nominal), 2 V P-P ripple (maximum).
- The total auxiliary current available for non-alarm loads is 5A. The total current available for the entire SPS is 9A, including NAC, auxiliary, and card power.
- The Auxiliary Power output is rated at 2A DC. Programming is required to activate this supply output.
- A Fuse Distribution board is fitted to the SPS bracket and wired to the Auxiliary Power output as standard. Each output from this board is protected by a 1 A fuse. Do not fit heavier fuses than 1A since this may defeat the fuse protection. The combined output from the DC Distribution board is limited to 2A.
- All wiring is $0.75 \mathrm{~mm}^{2}$ to $4 \mathrm{~mm}^{2}$.
- All SPS powered field wiring requires a ferrite bead fitted (refer Figure 5.1).
- All wiring that leaves the building requires overvoltage protection. Install module 2081-9044 wherever wire enters or exits the building. A maximum of four 2081-9044 Modules may be connected to one channel.
- When a NAC is configured as an auxiliary power circuit, no end-of-line resistor is used.
- External power wiring is not supervised unless an end-of-line relay is wired, coil to auxiliary power, and Normally Open contacts are monitored by a system power point. Relay current must be considered as part of the load.

SPS Auxiliary Power Wiring, Continued

\{xe "auxiliary power: isolators and"\}\{xe "IDNet power isolator"\}\{xe "isolators"\}\{xe "power isolators"\}

Wiring
The SPS can connect to auxiliary power appliances via the dedicated auxiliary power tap (TB3). See Figure 5-9. If more power is needed, any of the three NAC outputs can be used for auxiliary power.

Class A Aux power wiring requires the use of 4090-9117 IDNet Power Isolators, as shown above.

- Maximum load per NAC: 3A alarm, 2A non-alarm load
- Maximum load per Fuse Distribution Board output: 1A, limited to 2A collectively.
- Class A wiring is possible only if 4090-9117 Power Isolators are used.
- Ferrite beads must be fitted on NAC wiring. Use kit 4100-5129 (3 beads).

Figure 5-9. Auxiliary Power Wiring

SPS Relay Wiring

\{xe "wiring: SPS auxiliary relay"\}\{xe "system power supply (SPS): wiring, auxiliary relay"\}\{xe "wiring: auxiliary relay"\}\{xe "auxiliary relay"\}

Overview

Aux 1 Relay

Alarm Relay Card

The SPS has one programmable relay, Aux 1, with one set of voltage-free contacts (see below).

The Alarm Relay 4100-6033 is fitted as standard to 4100ES-S1. This has 3 relays, each with one set of normally open (or normally closed) contacts available on a screw terminal block (see Chapter 4).

- The relay must be configured in the Programmer.
- The relay circuit is rated to switch 2A resistive or 1 A inductive at 30VAC or 32VDC.
- Relay contacts are Form C (change-over) voltage-free contacts (but with a 40 V transorb from common to Earth). Do not switch voltages greater than this rating, or damage may result.
- When power through the relay contacts is provided by the SPS Auxiliary Power output, wiring is power-limited.
- The relay circuit is not supervised.

The three relays have default functions of Fault (trouble), Isolate (supervisory) and Alarm, and are typically used for Brigade Signalling (refer to Chapter 4 for jumper settings and other Brigade device information).

SPS IDNet Wiring
 \{xe "guidelines for wiring: IDNet"\}xe "IDNet: guidelines for wiring"\}\{xe "wiring: guidelines (IDNet)" $\{x$ xe "remote power supply (RPS): wiring guidelines (IDNet)" $\{x$ xe "system power supply (SPS): wiring guidelines (IDNet)"\}

Overview

IDNet Wiring

This section describes how the IDNet Channel on the SPS connects to addressable devices/detectors.

The guidelines governing IDNet wiring guidelines are covered in Chapter 6, IDNet Installation.

Up to 250 IDNet initiating devices are supported on the SPS IDNet channel. The SPS supports both Class A (loop) and Class B (string) wiring. Class A wiring is mandatory for connection to more than 40 devices.

Class A wiring allows IDNet appliances to continue to communicate with the SPS even in the event of an open circuit somewhere in the loop. Class A wiring requires that two wires are routed from the SPS to each IDNet appliance, and then back again to the SPS.

Class B wiring allows "T" tapping, and therefore requires less wiring distance per installation than Class A.

Note that IDNet wiring does not require end-of-line resistors, because each IDNet appliance communicates directly to the SPS.

Ferrite beads are required on the SPS IDNet cables (refer Figure 5.1).

- Shielded cable is recommended in electrically noisy environments.
- IDNet cabling should not be run adjacent to other cabling, especially non-fire system cabling, such as mains.
- The limiting factors on the length of the twin core cable connecting the IDNet devices to the IDNet card are cable capacitance (attenuates the superimposed coms signal) and resistance (causes voltage drop of the supply voltage and comms signals).
- The maximum capacitance of 0.58 uF core to core must also include the mutual capacitance of core to earth. Shielded cable has a much higher capacitance to earth.
- Rather than do voltage drop calculations, Figure 6-4 can be used to check that cable limits have not been reached. For a Class A (loop) circuit, cable distance refers to the full distance around the loop. For a Class B (spur) circuit, cable distance refers to the distance from the panel to the furthest end of the cable.
- Sounder bases and 6 point I/O modules do not draw the alarm load from the loop, but are powered from separate 24 V terminals.
- Where devices, e.g. sounder bases, are wired from a 24 V source (e.g. supplied by 24 V Aux Power or a NAC), and are in more than 1 zone, the power cable must also be isolated between zones by a 4090-9117AU Power Isolator Module.

SPS IDNet Wiring

, Continued

Notes

1. The current allowance per device on the loop is 0.5 mA with the LED off, 2 mA with the LED on. A maximum of 20 LEDs will be turned on at any time by the IDNet Card, e.g. in alarm.
2. The minimum voltage allowed at the furthest device to guarantee operation is 24.9 Vdc . The IDNet boosts its output voltage from 30 V to 35 V during alarm.

Figure 5-10. Cable Distance \& Device Limits for Common Cable Sizes

SPS IDNet Wiring

, Continued

Class A (loop) Wiring

To connect addressable devices/detectors to the SPS IDNet using Class A wiring, read the following instructions.

1. Ferrite beads are required on the SPS IDNet cables (refer Figure 5.1).
2. Route wire from the $\mathrm{B}+$, B - outputs on TB1 of the SPS to the appropriate inputs on a peripheral IDNet device.
3. Route wire from the first IDNet device to the next one. Repeat for each device.
4. Route wire from the last IDNet device to the A+ and A- inputs on TB1 of the SPS.
\{xe "wiring: Class A (IDNet)"\}\{xe "Class A wiring: IDNet"\}\{xe "IDNet: wiring (Class A)"\}\{xe "remote power supply (RPS): wiring, (IDNet Class A)"\}\{xe "system power supply (SPS): wiring (IDNet Class A)"\}

Figure 5-11. Class A (loop) Wiring

SPS IDNet Wiring

, Continued

Class B (string) Wiring
\{xe "wiring: Class B (IDNet)"\}\{xe "Class B wiring: IDNet"\}\{xe "IDNet: wiring (Class B)"\}\{xe "remote power supply (RPS): wiring (IDNet Class B)"\}\{xe "system power supply (SPS): wiring (IDNet Class B)"\}

To connect addressable devices/detectors to the SPS IDNet using Class B wiring, read the following instructions.

1. Under AS 1670.1 Class B wiring is allowed only for a maximum of 40 addressable devices.
2. A ferrite bead is required on the SPS IDNet cable.
3. On TB1, jumper $\mathrm{B}+$ to $\mathrm{A}+$, and jumper B - to A -.
4. Route wire from the $\mathrm{B}+$, B - terminals to the devices.

The illustration below shows Class B wiring.

Figure 5-12. Class B (string) Wiring

Chapter 6 Using Install Mode

Introduction

In this Chapter

Install Mode is a 4100ES facility which is useful during panel installation.
While a 4100ES panel is being installed and commissioned, there will often be periods when many internal modules or external devices are not yet connected, or are not in a normal state for some reason.

With the full configuration loaded in the 4100ES, each missing or off-normal device gives rise to a fault. Having the fault list full of faults from devices that are known to be missing or off-normal can make it difficult to work with the faults from devices that are actually present.

Install Mode provides a means to hide "known" faults from being displayed.

Any internal module or external device can be added to the Install Mode list, using the front panel interface. If there is any device in the Install Mode list, there will be a single fault indication "Install Mode Active". However, the devices in the Install Mode list will not produce fault indications, even if they are missing or faulty. All the individual device faults are hidden behind a single Install Mode Active fault.

As modules and devices are progressively added to the system and normalised, they can be removed from the Install Mode list. When the system is fully commissioned, the Install Mode list should be empty.

This chapter describes how to add and remove devices from Install Mode.

Refer to the page number listed in this table for information on a specific topic.

Topic	See Page \#
Adding Devices to Install Mode	$6-2$
Viewing and Removing Devices in Install Mode	$6-3$

Adding Devices to Install Mode

Adding a Single Device to Install Mode

Adding Multiple Devices to Install Mode

Devices can be added individually to the Install Mode list.
NOTE: this requires being logged in at Level 3. Refer to the Operator Manual, if necessary, to do this.

1. Press the <Fault Ack> key and step through the list with the Next/Previous arrows to find the device.
2. Press the <More Info> key.
3. Step through the list of options with the Next/Previous arrows to find the Add to Install Mode? option.
4. Press <Enter> to select this. The action happens immediately.

If this is the first item being added to the Install Mode list, the Fault light will start flashing. Pressing the <Fault Ack> key will show the Fault List, now with a single fault point INSTALL MODE ACTIVE entry.

Where there are many missing devices, or devices not connected to field wiring, all producing faults, there are simple ways to quickly add these to the Install Mode list in bulk.

NOTE: this requires being logged in at Level 3. Refer to the Operator Manual, if necessary, to do this.

1. Press the $<$ Menu $>$ key.
2. Use the Next/Previous arrows to step through the menu to the Diagnostic Functions? option. Press <Enter> to select this.
3. Use the Next/Previous arrows to step through the menu to the View/Modify Install Mode List? option. Press <Enter> to select this.
4. Step through to either the Move NO ANSWER devices to install mode list option or the Move ALL OPEN CIRCUITS to install mode option.
5. Press <Enter> to select.

The panel will take a few seconds to search for all the selected devices and add them to the Install Mode list. The single remaining fault is the Install Mode fault.

Viewing and Removing Devices in Install Mode

Viewing Contents of Install Mode list

Removing Individual Devices from Install Mode

Removing Many

Points from Install Mode

To view the devices and other contents currently in Install Mode:

1. Press the $<\mathbf{M e n u}>$ key.
2. Use the Next/Previous arrows to step through the menu to the Diagnostic Functions? option. Press <Enter> to select this.
3. Use the the Next/Previous arrows to step through the menu to the View/Modify Install Mode List? option. Press <Enter> to select this.
4. The first option is View Install Mode list? Press <Enter> to select.
5. Use the Next/Previous arrows to step through the Install Mode list.

If you are logged at Level 3, you can remove individual devices from the Install Mode list.

1. Display the Install Mode list as in the previous section.
2. Step through the list to device to be removed.
3. Press the <More Info> key.
4. Step through the list of options with the Next/Previous arrows to find the Remove from Install Mode? option.
5. Press <Enter> to select this. The action happens immediately.

If the device is still in fault, the system fault count will increase and the Fault indicator will flash for a new fault.

Just as many missing devices can be added to the Install Mode list quickly, so can many devices be removed from the list.

1. Press the $<$ Menu $>$ key.
2. Use the Next/Previous arrows to step through the menu to the Diagnostic Functions? option. Press <Enter> to select this.
3. Use the Next/Previous arrows to step through the menu to the View/Modify Install Mode List? option. Press <Enter> to select this.
4. Step through to either the Move ALL NORMAL devices from install mode option or the Move ALL DEVICES from install mode option.
5. Press <Enter> to select.

The panel will take a few seconds to remove them from the Install Mode list.
If there are devices is still in fault, the system fault count will increase and the Fault indicator will flash for new faults.

Chapter 7 PC Software Connections

\{xe "service port"\}
Introduction
The service port on the door with the Operator Interface enables the 4100ES-S1 to connect to a PC running important utilities, such as diagnostics, programming, CPU firmware downloading, and channel monitoring.

In this Chapter
Refer to the page number listed in this table for information on a specific topic.

Topic	See Page \#
Software Modes	$7-2$
Ethernet Service Port and Serial Service Port	$7-4$

The 4100ES-S1 can connect to a PC running important utilities, such as diagnostics, programming, CPU firmware downloading, and channel monitoring. It connects to the PC running all of these utilities via the service port on the CPU card.

There are three basic software modes that the service port or service modem can be used to connect to:

- Service and Diagnostics Mode
- Data Transfer Interface Mode
- Master Bootloader Interface Mode

Each mode is described below.
\{xe "diagnostics"\}

Service and Diagnostics Mode.

This is the default functionality when a PC is connected to the panel. On a PC, this mode provides application startup messages, an ASCII interface to a UI command set for diagnostics, and event reporting. A pre-configured terminal emulator is part of the 4100ES software and can be launched from the Programmer. The connection to a PC is made either through the serial port, through the service modem, or through the Ethernet port.

Figure 7-1. Service and Diagnostic Interface
Data Transfer Interface Mode. In this mode, the 4100ES Programmer is used. This allows for slave downloading, as well as downloading a configuration and audio messages to the 4100ES-S1, and uploading a configuration or history log. Connection to a PC is made via serial port or service modem or through the Ethernet port.\{xe "data transference"\}

Figure 7-2. Data Transfer Interface

Software Modes, Continued

Software Modes (continued)

Master Bootloader Interface Mode. This mode is used to download the Master CPU Exec firmware and the CFG.TXT file to the CPU via the serial port or through the Ethernet port.

Figure 7-3. Bootloader Interface

Ethernet Service Port and Serial Service Port

Ethernet Service Port Overview (0566-719 only)

The Ethernet service port J1 on the CPU card (0566-719) is used to connect the panel to a local PC. See Figure 7-4 for the port location.

Figure 7-4. CPU card ports

The Ethernet service port connects to the front panel Ethernet connection through a standard straight (non-crossover) Ethernet Patch Cable. The service technician should connect the PC to the CPU card through this front panel connection with a standard straight Ethernet cable (see Figure 7-5). If this connection is not available, you may plug directly into the CPU Card connector J1 to the PC with a standard straight Ethernet cable.

Figure 7-5. Front Panel Ethernet Service Port

The Serial Service Port P5 on the CPU card (0566, 149, 0566-692 and 0566-719) can also be used to connect the Panel to a local PC. See Figure 7-4 for the port location. To use this port, the technician must connect the serial service port cable on the PC directly to the serial Service Port (P5) on the card.

Chapter 8

Installation Checklist, Commissioning \& Maintenance
\{xe "service port"\}

Introduction

In this Chapter

The $4100 \mathrm{ES}-\mathrm{S} 1$ is tested in the factory and is loaded with a basic configuration.
When the panel arrives on site the installer must unpack and check the panel, mount the cabinet, any additional cards, and check the configuration before applying power.

A registered electrician must connect the mains. The panel should then be powered up and checked for correct operation.

With the mains turned off and the batteries disconnected, the field wiring is checked and connected to the field terminals on the various cards.

The panel should then be powered up and re-programmed to accommodate all the connected field devices. Faults in the field wiring, misaddressed detectors / devices and mismatched detectors / devices will be displayed on the LCD. These should be cleared one at a time and then the system (panel plus connected devices) should be commissioned.

Refer to the page number listed in this table for information on a specific topic.

Topic	See Page \#
Alignment \& Adjustment	$8-2$
Power Up \& Placing into Operation	$8-3$
Maintenance	$8-4$

Alignment \& Adjustment

Overview

All the 4100ES-S1 cards and modules in the base panel are tested and aligned in the factory before being supplied to the customer. The only field adjustment that may be necessary is to set the battery charger voltage. (Note this has been set and should not need re-adjusting).

R341 Battery Charger Voltage

Should the battery charger voltage need adjusting, the method is as follows:

1. Run the system with the batteries connected and the door closed for at least 30 minutes to allow components to "warm up" (the longer the better).
2. Calculate the required no-load battery charging voltage by taking 27.3 V for $20^{\circ} \mathrm{C}$ and subtracting 0.1 V for every $3^{\circ} \mathrm{C}$ above $20^{\circ} \mathrm{C}$, or adding 0.1 V for every $3^{\circ} \mathrm{C}$ below $20^{\circ} \mathrm{C}$.
3. With the system not in Alarm, disconnect the batteries.
4. Measure the voltage at the battery terminals on the SPS and adjust this to the voltage calculated in Step 2 by turning pot R341 on the SPS.
5. Re-connect the batteries.

To place the 4100ES-S1 into operation, perform the following steps:
STEP 1 Ensure that the Mains Switch is OFF.
STEP 2 Ensure that 240 VAC is connected to the panel from the mains distribution switchboard.

STEP 3 Ensure that the Lithium battery is fitted to battery holder on the CPU card, and link P3 is fitted to the BAT ON position.

Turn the Mains Switch ON.
STEP 4 Check that the green "MAINS ON" LED indicator is on. The Controller performs tests on its memory, electronics, and the LCD.

STEP 5 Check that the buzzer sounds and the LCD display "CPU Serial Number".
STEP 6 Check that the LCD has good visibility. Adjust the LCD Contrast control on the inside of the keyboard door, if necessary.

STEP $7 \quad$ Install and connect the batteries. Take care not to short the battery leads or connect in reverse polarity when connecting.

STEP 8 Press the Lamp Test key on the control panel and check that all LEDs turn on, and the LCD shows all black squares.

STEP $9 \quad$ Clear any faults one at a time.
A full commissioning test must be carried out as per the requirements of AS 1670.1. Refer to the appendix in this manual for detail on checking wiring, and earth fault detection. Refer to the 4100ES-S1 Operator Manual LT0395 for detail of the walk test that may be used for verifying correct detector operation.

Maintenance

The 4100ES-S1 system must be kept free from faults and tested on a weekly, monthly and annual basis to verify that it is operating correctly. The tests required by part 8 of the standard AS 1851 Maintenance of Fire Protection Equipment are detailed in the 4100ESS1 Operator Manual, LT0395.

The Operator manual also provides detail of report printing and performing tests that are useful for checking the system.

Appendix A
 Card Address DIP Switch

\{xe "addresses: setting, for 4100U modules"\}\{xe "card configuration: address setting"\}
Addressable cards include a bank of eight DIP switches. From left to right (see Figure A1 , below) these switches are designated as $\mathrm{SW} x-1$ through $\mathrm{SW} x-8$. The function of these switches is as follows:

- SWx-1. This switch sets the data rate for the internal 4100ES communications line running between the card and the CPU. Set this switch to ON.
- SWx-2 through SWx-8. These switches set the card's address within the 4100ESS1. Refer to Table A-1 for a complete list of the switch settings for all of the possible card addresses.

Note: You must set these switches to the value assigned to the card by the 4100ES Programmer.

Figure A-1. DIP Switch SWx

Appendix B Programming Requirements

\{xe "ULC programming requirements"\}

Introduction

Required Features

Notes

This appendix briefly summarises the programming that is required to comply with AS 4428.1.

It does not provide equations or detail of programming. Refer to LT0400 4100ES-S1 Programming Guide for descriptions of the AS 4428.1 programming. The separate 4100ES Programming Manual tells how to use the PC-based 4100ES Programmer.

The following is a list of functions that must be programmed under custom control. Functionality must comply with AS 4428.1, and be as described in the Operator Manual LT0395.

- Individual zone alarm indication, flashing until isolated, steady when isolated.
- Common Zone Alarm indication, flashing when any zone in alarm is un-isolated, steady when all zones in alarm are isolated.
- Individual zone isolate pushbutton and indication.
- Zone Alarm Test pushbutton and indication.
- Zone Fault Test pushbutton and indication.
- Warning System Isolate pushbutton and indication.
- External Bells Isolate pushbutton and indication.
- Ancillary Control Function and Isolate pushbutton and indication as required.
- Weekly 1 hour battery test.
- Fault indication after 8 hours of isolate.

The configuration templates for the 4100ES-S1 all contain the necessary Custom Control equations for these functions. These settings should not be altered except under advice from Simplex.

- The US options for power supply and AVF are selected, not the Canadian ones.
- Features that do not comply with AS 4428.1 must not be enabled, e.g. Alarm cut-out times.
- Features that are statutory in AS 4428.1 must not be pass-code protected, e.g. zone isolate, zone test (Fault and Alarm).

Appendix C Checking System Wiring

\{xe "wiring: troubleshooting"\}\{xe "troubleshooting: wiring"\}\{xe "volt-Ohm meter usage"\}

Overview

Using the Volt/

 Ohm MeterThis appendix contains instructions on how to use a volt/ohm meter to check system wiring.

When using the volt/ohm meter to check each circuit, make sure to adhere to the notes and instructions below.

Notes:

- For these tests, the mains connection to the panel must be in place, but the mains must be switched off and the battery must be disconnected. All other internal panel wiring must be properly connected (terminal blocks, LED/switch module ribbon cables, etc.).
- Use the earth stud in the control panel as the earth connection for all measurements to ground.
- Measuring resistances between 4100ES terminals or from terminals to ground will give meaningless results.

Use the volt/ohm meter as described in the steps below to check each circuit type.

1. Disconnect Wires: At the 4100ES panel, disconnect the wires for each circuit from the terminals before testing it. If it is a Class A (loop) type of circuit, e.g., IDNet loop, ensure that both ends of the loop are disconnected from the 4100ES.
2. Test for AC: Check each circuit for extraneous voltage by setting the volt/ohm meter to a 300 VAC range. Place the meter probes so that the black probe is on the "-" wire and the red probe is on the "+" wire. Meter readings must show less than 1 V .
3. Test for DC: Set the volt/ohm meter to a 60VDC range and keep the probes placed as in step 2. The meter must read less than 0.5 V .
4. Test Resistance: Set the volt/ohm meter to OHMS and place the meter probes as described in step 2. Check the circuits using the resistance measurements in Table C-1.
Shift the meter probes so that one probe is on both the "+" and "-" wires, and the other probe is on the earth terminal in the panel. The meter should read an open circuit.
Locate and correct any abnormal conditions at this time.
Note 1: If the reading indicates an open circuit in a conventional detector circuit, make sure the smoke detector heads are properly mounted and seated. The circuit may also be open if smoke detector power is not present, and if separately powered 4 -wire devices are used.
Note 2: IDNet addressable loops can give a good reading even when certain wiring faults are present, due to the effect of channel isolators in the loop. The 4100ES-S1 can perform live testing on an IDNet loop for earth faults. See Appendix D for details about how to do this.
5. Repeat for Next Circuit: Reconnect the circuit wiring to the correct terminals, and move to the next circuit to be tested.
Repeat steps 1-4 for all field wiring, to verify that each circuit is free of grounds and extraneous voltages.

Appendix C: Checking System Wiring, Continued

Meter Readings

Table C-1 lists the correct meter readings for different circuit types. Remember, these readings must be made with the field wiring disconnected from the 4100ES terminals.

Table C-1. Acceptable Zone and Signal Circuit Meter Readings

Circuit Type	Meter Reading
Class B (spur) Detector Circuit (each circuit)	
From zone + wire to zone - wire (each zone)	$3.3 \mathrm{k} \Omega$ (EOLR)
From zone + wire to ground	Open circuit
From zone - wire to ground	Open circuit
Class B (spur) Notification Appliance Circuit (each circuit)	
From $B+$ wire to B - wire: In one direction In the opposite direction	$10 \mathrm{k} \Omega$ (EOLR) Low resistance (Load)
From $\mathrm{B}+$ wire to ground	Open circuit
From B- wire to ground	Open circuit
Shielding	
Shield to ground	Open circuit
Shield to - wire	Open circuit
Shield to + wire	Open circuit
IDNet Loop	
From IDNet B+ wire to ground	Open circuit
From IDNet B- wire to ground	Open circuit
From IDNet A+ wire to ground	Open circuit
From IDNet A- wire to ground	Open circuit
Note: measuring from IDNet $B+$ to $A+$ wires, or B - to A - wires will read as a high resistance or open circuit due to the channel isolators in the loop.	

Appendix D Earth Fault Detection

\{xe "wiring: Earth Fault Search"\}\{xe "Earth Fault Search"\}

Overview

This appendix contains instructions on how to use the Earth Fault Search feature of the 4100ES-S1 diagnostics menus.

Earth Fault Search is a diagnostic search of external field wiring that assists in locating circuits with earth faults. An earth fault occurs when an electrical circuit is shorted to ground. Although most circuits operate with a single earth fault, multiple earth faults can disable communications. Because of this, earth faults must be located and repaired.

Earth Fault Search is conducted by the 4100ES-S1. The diagnostic may be activated using either the front panel interface or the Computer Port Protocol via a service port.

The 4100ES-S1 supports two types of Earth Fault Searches:

- Location Search. Searches all circuits at a location, such as the main panel.
- IDNet Channel Search. Selectively enables channel isolators and repeaters to detect which segment of the channel wiring has a fault.

Review the guidelines below before initiating an Earth Fault Search.

- The Detect Earth Fault jumper must be installed at the SPS for earth fault detection to occur.
- Only one power supply per location is configured to detect earth faults.
- For more reliable earth fault searching:
- Use IDNet channel isolators to isolate channel faults to a specific segment of channel wiring.
- Set IDNet channel isolator addresses to the lowest IDNet device addresses, increasing with communication distance from the IDNet card.
- If an earth fault is suspected on the IDNet channel with multiple isolators, start an IDNet Channel Search before doing a Location Search. If the Location Search is done first, it may not yield the correct location (this is a by-product of the extended amount of time required for the IDNet channel to initialize during a Location Search).
- Earth Fault Search detects only one fault at a time. Multiple faults require fixing the first fault and then repeating the search.
- The 4100ES-S1 suspends normal operation for the duration of the Earth Fault Search. Alarm processing will be stopped.
- Location Earth Fault Searches optionally allow exclusion of auxiliary power circuits from the search, so that modules connected to the 24 V auxiliary outputs can remain in operation during the search.
- The option to exclude auxiliary power circuits does not apply to IDNet devices, because the entire IDNet communication channel is isolated during each search.
- During the search, all related troubles are suppressed and a single trouble pseudo-point is activated (P438).
- At the completion of the search, all slaves are restarted and normal panel operation resumes.
- Earth Fault Search is only supported by new 4100ES modules. 4100 Legacy (slot format) modules are not supported, with the following exceptions:
- IPS for earth fault detection (not recommended). The Earth Fault Search may fail because the isolation circuits of some 4100ES slaves do not support IPS.

IMPORTANT: The fire panel cannot provide fire protection during an Earth Fault Search.

Earth Fault Searching from the Front Panel

Overview

Access Level Selection

This section describes how to conduct an Earth Fault Search, from selecting the appropriate access code to correcting the fault.

The panel must be at the appropriate access level ($1,2,3$, or 4) in order to run diagnostics. To get to the correct access level:

1. Press the Menu button. The following message comes up (press the Next or Previous buttons, if necessary, to display it).
```
Press <NEXT> or <PREVIOUS> to scroll
Change Access Level?
```

1. Press the Enter button. Now you are prompted to log in or log out.

1=Login \quad 2=Logout	
CURRENT	ACCESS LEVEL $=x$

2. Press the "1" key on the numeric keypad to log in, so that the passcode prompt comes up.
Enter a Passcode followed by <ENTER>
3. Enter the passcode and press the Enter button. ACCESS GRANTED displays briefly on the LCD, and then the display goes back to:
```
1=Login 2=Logout
CURRENT ACCESS LEVEL = y
```

You can now open the diagnostic menu as described in the next topic.

To start an Earth Fault Search,
Starting the Earth Fault Search

1. If necessary, press the Menu button to access the menus.
2. Press the Previous or Next buttons until the diagnostic functions option appears:
```
Press <NEXT> or <PREVIOUS> to scroll
Diagnostic Functions?
```

5. Press the Enter button. Then press Next or Previous buttons until the Earth Fault Search option appears:
```
Press <NEXT> or <PREVIOUS> to scroll
Earth Fault Search?
```


Earth Fault Searching from the Front Panel, Continued

Starting the Earth Fault Search, Continued

Search Option A: Select Location
6. Press the Enter button. The following options become available when you press the Next and Previous buttons:

Press <NEXT> or <PREVIOUS> to scroll
Location Search
:---
IDNet Channel Search
Press <NEXT> or <PREVIOUS> to scroll Last Search Result

The search types are described below. When you have determined what kind of search to initiate, display its option (one of the three shown above) and press the Enter button. Each option has its own topic, below.

If you select the Location Search menu item, a list of cards to search becomes available. Use the Next and Previous buttons to scroll through the list.

If you find a card that you suspect is connected to a circuit with an earth ground, press the Enter button when that circuit is shown.

Before you can start the search, the Aux Power Select option comes up.

1=Exclude $2=$ Include
Exclude AUXPWR circuits from search?

The number you select, 1 or 2 , determines whether the auxiliary power circuit on the selected board is searched for earth grounds. If you exclude the auxiliary power circuit from the search, the circuit will continue to operate normally.

Press 1 (or just press the Enter button) to exclude the card's auxiliary power circuits from the search, or press 2 to remove auxiliary power circuits from normal operation and search them for earth grounds.

Now you are prompted to start the search. When the location you want to search is shown and "Press <ENTER> to start search" displays, the search is ready to start. A sample is shown below.

CARD 1, SYSTEM POWER SUPPLY
Press <ENTER> to start search

NOTE: The 4100ES-S1 suspends normal operation for the duration of the search.

Press the Enter button to start the search.
As the search progresses, watch the display for an indication of how much of the search has been completed. The search can be aborted at any time if you press the Clear button.
Earth Search In-Progress, Please Wait...
Earth Search In-Progress, Please Wait...
40%

Skip ahead to the "Completing the Search" topic.

Earth Fault Searching from the Front Panel, Continued

Search Option B: Select Channel

Search Option C: Last Search Result

If you select the IDNet Channel Search menu item, a list of IDNet channels to search becomes available. Use the Next and Previous buttons to scroll through the list. When the IDNet channel you want to search is shown and "Press <ENTER> to start search" displays, the search is ready to start. A sample screen is shown below.
IDNET CHANNEL M12
Press <ENTER> to select for search

NOTE: The 4100ES-S1 suspends normal operation for the duration of the search.

Press the Enter button to start the search.
As the search progresses, watch the display for an indication of how much of the search has been completed. The search can be aborted at any time if you press the Clear button.
Earth Search In-Progress, Please Wait...

Earth Search In-Progress, Please Wait... 40\%

Skip ahead to the "Completing the Search" topic.

This option simply displays the last Earth Fault Search result. If there has been no search since the last system startup, or if the last search was aborted, the panel displays "RESULT NOT AVAILABLE."

When a Location or IDNet Channel Search completes, all of the following occurs:

- All slaves automatically reset.
- The 4100ES-S1 turns off the Earth Fault Search trouble pseudo-point.
- The panel displays the specific fault information.

The panel can return only one Earth Fault Search result at a time. If another fault exists, it can only be found using the diagnostics after the first fault is cleared. Faults will continue to appear, one by one, until each one has been found and corrected.

IMPORTANT: Once you have been directed to an earth fault and corrected it, it is recommended that you restart the system (warm- or cold-start).

Continue to the next topic for a list of search results and their required actions.

Search Results

Overview
There are several types of results that can display at the end of an Earth Fault Search. This section covers all types of results.

IMPORTANT: Once you have been directed to an earth fault and corrected it, it is recommended that you restart the system (warm- or cold-start).

Non-Point Faults

A non-point fault indicates a ground that cannot be traced to an addressable point (for example, a shield or an audio riser). The earth fault in this example is not occurring at the audio controller but somewhere in the riser:

CARD 17, ANALOG AUDIO CONTROLLER	
AUDIO RISER 1	EARTH FAULT

Non-point faults can be displayed for each of the following items:

- Channel Output (IDNet Card; MAPNET Interface Card)
- RUI Channel (Master Controller Card). (Not used in 4100ES-S1).
- Channel 1 to 3 (TrueAlert Power Supply). (Not used in 4100ES-S1).

A point fault indicates an earth fault at a specific addressable point. The example below is a location earth fault search result, where 3 is the card address, 10 is the point number, and 0 is the
sub-point number (not used):

| CARD 003, FLEX 50 AMPLIFIER |
| :--- | :--- |
| $3-10-0$ $\mathbf{E A R T H}$ FAULT |

Point faults can be found at any point in the system that connects to field wiring.
Some IDNet channel point fault examples are illustrated below.
Fault not cleared. The message below shows that an IDNet channel that has been isolated for fault detection still has the earth fault:

| CARD 2, IDNET CARD (250 | POINTS) |
| :--- | :--- | :--- |
| M1, EARTH FAULT SEARCH | FAULT CLEAR FAIL |

Fault between channel output and first isolator. The message below shows a fault between the IDNet channel output and the first isolator on the line:

CARD 2, IDNET CARD	$(250$ POINTS)
M1, CHANNEL OUTPUT	EARTH FAULT

Search Results, Continued

Point Faults,

 Continued
Fault Not Found

No Fault

Result Not Available

IDNet isolator fault. The message below shows a fault detected after the IDNet isolator was turned on:

| CARD 2, IDNET CARD (250 POINTS) | |
| :--- | ---: | :--- |
| M1-3, IDNET ISOLATOR | EARTH FAULT |

If the message in the lower right corner of the LCD reads FAULT NOT FOUND (for a Location Earth Fault Search) or FAULT CLEAR FAIL (for an IDNet Channel Earth Fault Search), it means the search could not locate the fault, but it acknowledges that a fault exists.

There are three main possibilities behind this message:

- There are one or more internal wiring earth(s) in the system.
- There are system defects (hardware or software, such as a failed isolation circuit).
- An intermittent earth exists in the system (it occurs inconsistently and is therefore difficult to track via diagnostics).
- The cable to the service port may be grounded due to the remote PC's 3-pin plug. Run the laptop on batteries only, or, use an isolating transformer to the PC to get rid of this earth.
- The fault is on an auxiliary output that was excluded from the search.

The problem may have to be found manually and then corrected in some of the above scenarios.

If the message in the lower right corner of the LCD reads NO FAULT, it means the IDNet channel search could not locate any earth faults on that channel.

If the message in the lower right corner of the LCD reads RESULT NOT AVAILABLE, it means there is no result to view. This message comes up only when you have selected "Last Search Result" on the menu.

Appendix E Related Documentation

\{xe "documentation set"\}
The following manuals are relevant to the 4100ES-S1.

Book Part Number	Title
LT0395	4100ES-S1 AS4428 FIP OPERATOR MANUAL A5
LT0393	$4100 E S-$ S1 ASE \& AIU/PPU DOOR INSTALL INSTRUCTIONS
LT0400	$4100 E S-S 1$ PROGRAMMING AND CONFIGURATION GUIDE
LT0307	4100 Field Wiring Diagrams (see LT0432 also)
LT0432	$4100 E S$ Australian Wiring Diagrams
LT0298	24 POINT GRAPHIC I/O Module Installation
$574-800$	$4100 E S$ IDNet Card Installation Instructions
$579-786$	$4100 E S$ IDNet+ Cards Installation Instructions
$579-220$	$4100 / 4120-$ Series Relay Modules Installation Instructions
$579-205$	$4100 / 4120-$ Series Class A / Class B Zone Modules Installation Instructions
$579-221$	$4100 / 4120-$ Series Dual RS-232/2120 Modules Installation Instructions
$574-050$	$4100 / 4120-$ Series VESDA Interface Cards Installation Instructions

The following is a listing of US documentation that may be relevant to 4100ES-S1.

Book Part Number	Title
$574-674$	4100/4120-Series MAPNET Isolator Modules Installation Instructions
$574-772$	4100U XPS and XNAC Installation Instructions
$574-839$	4100U City and Relay Cards Installation Instructions
$574-848$	4100 Fire Alarm System/ System Installation Guide (US version)
$574-849$	$4100 E S$ PC Programmer Programming Manual

Continued on next page

Appendix E: Related Documentation, Continued

Book Part Number (cont.)	Title (cont.)
$579-182$	4100/4120-Series NIC and Media Modules Installation Instructions
$579-184$	$4100 / 4120-$ Series Physical Bridges and 4100/4120-Series Media Modules Installation Instructions
$579-246$	4100 U SPS/RPS Installation Instructions
$579-248$	4100-0632 Terminal Block Utility Module Installation Instructions

Appendix F Compatible Actuating Devices

Introduction

In this Chapter
Refer to the page number listed in this table for information on a specific topic.

Topic	See Page \#
List of Approved Devices	F-1
Compatible Detectors, IDNET	F-4
Compatible Addressable Field Devices, IDNet	F-5

List of Approved Devices

Simplex Range - Conventional Detectors

$4098-9413$	Heat detector Type A
$4098-9414$	Heat detector Type B
$4098-9415$	Heat detector Type C
$4098-9416$	Heat detector Type D
$2098-9201$	Photoelectric smoke detector
$2098-9576$	lonisation smoke detector

Detector Type	$4100-5001 / 2 / 4$ 8 Zone Module	$2190-9156$ Monitor ZAM	$4090-9101$ Monitor ZAM
4098-9601EA Photoelectric *	30	20	20
$4098-9603 E A$ Ionisation *	30	20	20
$4098-9618 E A$ Heat Type A *	30	20	20
$4098-9619 E A$ Heat Type B *	30	20	20
$4098-9621 E A$ Heat Type D *	30	20	20

* Remote indicator output cannot be wired in common with Tyco 614 series or the Minerva M614 series (and most other Tyco/Olsen) detectors.

Tyco Range - Conventional Detectors

Detector Type	$4100-5001 / 2 / 4$ 8 Zone Module	$2190-9156$ Monitor ZAM	$4090-9101$ Monitor ZAM
614CH CO/Heat Detector	37	25	25
6141	Ionisation Detector	40	29
614 P	Photoelectric Detector	28	19
614T	Heat Detectors - Type A, B, C, D	30	20
T614 Mk2	Heat Detectors - Type A, B, C, D	30	20

System Sensor Range - Conventional Detectors
Detector Type $4100-5001 / 2 / 4$ 8 Zone Module $2190-9156$ Monitor ZAM $4090-9101$ Monitor ZAM 885WP-B Weatherproof Heat Detector Type B *
40
40
40

* Remote indicator output cannot be wired in common with Tyco 614 series or the Minerva M614 series (and most other Tyco/Olsen) detectors.

Hochiki Range - Conventional Detectors

DCA-B-60R MK V	Type A heat detector
DCC-A	Heat Type A
DCC-C	Heat Type C
DCD-A	Heat Type A
DCD-C	Heat Type C
DFE-60B	Type B heat detector
DCA-B-90R MK 1	Type C heat detector
DFE-90D	Type D heat detector
DFG-60BLKJ	Type B heat detector
DFJ-60B	Heat Type B
DFJ-90D	Heat Type D
SPA-AB	Beam type smoke detector
SIH-AM	Ionisation smoke detector
SIF-A MK 1	Smoke
SIJ-ASN	Smoke
SLK-A	Photoelectric smoke detector
SLG-A MK 1	Smoke
SLG-AM MK 1	Photoelectric smoke detector
SLR-AS	Smoke
HF-24A MK 1	Ultraviolet smoke detector
YBC-R/3A	Plain - non indicating base
YBF-RL/4AH4	LED Indicating base

Olsen Range - Conventional Detectors

B111B	Beam type smoke detector
C24B	Ionisation smoke detector
C29BEX	Ionisation smoke detector
FW81B	Heat detector cable, Type E
P24B	Photoelectric smoke detector
P29B	Photoelectric smoke detector
R23B	Infrared flame detector
R24BEX	Dual spectrum infrared flame detector
T54B	Probe type heat detector type E
T56B	Heat detector types A,B,C,D with Z55B base
T56B	Heat detector types A,B,C,D with Z54B base
V41B/V42B	Ultraviolet flame detector

Apollo Range - Conventional Detectors
Series 60 Heat detector Type A
Series 60 Heat detector Type B
Series 60 Heat detector Type C
Series 60 Heat detector Type D
Series 60 55000-310 Aus Photoelectric smoke detector
Series 60 55000-240 Aus Ionisation smoke detector

Brooks Range - Conventional Detectors

PFS-A	Heat detector Type A
PFS-B	Heat detector Type B
PFS-C	Heat detector Type C
PFS-D	Heat detector Type D
PFS-P	Photoelectric smoke detector
PFS-P MK II	Photoelectric smoke detector
PFS-I	Ionisation smoke detector
PFS-I MK II	Ionisation smoke detector

Cerberus Range - Conventional Detectors

D01191A	Beam
DL01191A	Beam

Simplex MAPNET 2 Range - Addressable Field Devices

$2190-9156$	Mapnet 2 Monitor ZAM
$2190-9162$	Mapnet 2 Signal ZAM
$2190-9164$	Mapnet 2 Control ZAM
$2190-9169$	Mapnet 2 Line Powered Short Circuit Isolator
$2190-9172$	Mapnet 2 Supervised IAM
$2190-9173$	Mapnet 2 Loop powered 2 Point Input / Output
	Module
$4099-9032 N L$	Mapnet 2 Addressable Manual Call Point

Compatible Detectors, IDNET

The following lists the detectors approved for use with IDNet and shows current rating and numbers allowed per loop.

Device Type	Operating Current mA	Maximum Number Allowed Per Loop	Maximum Number Allowed Per Line
4nalogue Photoelectric Smoke Detector	0.5 (2 with LED on)	250	40^{*}
4098-9717E Analogue Ionisation Smoke Detector	0.5 (2 with LED on)	250	40^{*}
4098-9733E B Detector	0.5 $(2$ with LED on)	250	40^{*}
4098-9754E Analogue Multi (Heat/Photo) Detector	0.5 (2 with LED on)	250	40^{*}

* Maximum allowed by AS 1670.1.

The 9714E, 9717E and 9733E detectors use a (4098-) 9789E addressable base or 9794E addressable sounder base, or 9793 addressable isolator base. The 9754E uses a 9796E addressable base or 9795E sounder base.

The maximum specified loop/line resistance is 40Ω.
The maximum number of LEDs switched on during Alarm on an IDNet loop is 20.

Compatible Addressable Field Devices, IDNet

The following lists the addressable devices approved for use with IDNet and shows current rating and numbers allowed per loop.

Device Type	Operating Current mA	Maximum Addressable Point On Analogue Loop	Maximum Addressable Points on Analogue Line
$4090-9116$ IDNet Comms Isolator	$\begin{gathered} 0.5 \\ (2 \text { with LED on }) \end{gathered}$	250	40*
$\begin{gathered} 4090-9118 \\ \text { Relay IAM with T-sense } \\ \hline \end{gathered}$	$\begin{gathered} 0.5 \\ \text { (2 with LED on) } \end{gathered}$	250	40*
4090-9117 Addressable Power Isolator	$\begin{gathered} 0.5 \\ \text { (2 with LED on) } \end{gathered}$	250	40*
4090-9119 Relay IAM with unsupervised Input	$\begin{gathered} 0.5 \\ \text { (2 with LED on) } \end{gathered}$	250	40*
$\begin{aligned} & 4090-9120 \\ & 6 \text { Point I/O } \end{aligned}$	0.5	250	40*
4090-9001 or 4090-9051 Supervised IAM	$\begin{gathered} 0.65 \\ (2.8 \text { with LED } \\ \text { on }) \end{gathered}$	250	40*
$\begin{aligned} & 4090-9007 \\ & \text { Signal IAM } \\ & \hline \end{aligned}$	$\begin{gathered} 0.5 \\ \text { (2 with LED on) } \end{gathered}$	250	40*
$\begin{gathered} \hline 4090-9101 \\ \text { Monitor ZAM } \end{gathered}$	$\begin{gathered} 0.65 \\ (2.8 \text { with LED } \\ \text { on }) \end{gathered}$	250	40*
4099-9032 Manual Call Point	$\begin{gathered} 0.65 \\ (2.8 \text { with LED } \\ \text { on }) \end{gathered}$	250	40*

* Maximum allowed by AS 1670.1.

The maximum specified loop/line resistance is 40Ω.
The maximum number of LEDs switched on by an IDNet in alarm is 20.
The 6 Point I/O LED is powered from the external 24 V supply, not from the loop.
Note: The relays on the 6 Point I/O are not approved for switching field loads, i.e. the contacts may only be used to switch loads within an earthed cabinet.

Appendix G 4100ES-S1 Specifications

General

System Capacity	500 points of addressable devices, plus 500 points of annunciation.
Expansion	up to 4×4100 legacy cards
	up to 4×4 " $\times 5$ " PDI cards
Cabinet Size	1050H x 550W x 280D (mm)
Cabinet Material	1.2 mm Zintec
Cabinet Finish	Powder coated
Cabinet Colour	Cream Wrinkle external, flat black internal trim
Mounting	Wall mount
Mains Input	240 V AC, $+6 \%,-10 \%, 50 \mathrm{~Hz}$
Internal Power Supply	24V DC @ 9A
Standby Battery	24 V sealed lead acid type up 40Ah
Battery Charger	27.3V DC (nominal)
PSU Supervision	Charger high/low, Battery low/fail
Temperature	$-5^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$
Humidity	10\% to 90% RH non-condensing

Refer to Table 4-1 and 4-2 for full SPS specifications.

Fuses

Firmware Features

Alarm Relay Card:
F1 Alarm, 3A, $15 \times 5 \mathrm{~mm}$, Glass Cartridge
F2 Supervisory, 3A, $15 \times 5 \mathrm{~mm}$, Glass Cartridge
F3 Trouble, 3A, $15 \times 5 \mathrm{~mm}$, Glass Cartridge
Fused Distribution Board:
F1 24V Out, 1A $20 \times 5 \mathrm{~mm}$ Glass Cartridge
F2 24V Out, 1A $20 \times 5 \mathrm{~mm}$ Glass Cartridge
F3 24V Out, 1A $20 \times 5 \mathrm{~mm}$ Glass Cartridge
F4 24V Out, 1A $20 \times 5 \mathrm{~mm}$ Glass Cartridge

- WALK TEST System Test
- 4 Operator Access Levels
- Event Historical Logging
- Device selectable Alarm Verification
- Individual Zone Isolate
- Addressable device disable/enable
- Non-volatile Flash EPROM for field editable program changes
- Expansion cards firmware upgraded via download to flash EPROMs

Voltage \& Current Ratings of Modules \& Assemblies

The DC input voltage range of the following modules is $18-33 \mathrm{Vdc}$. The current listed is nominal for 24 Vdc , and may be used for battery capacity calculations.

Module	Name	Quiescent	Alarm
N/A	Master Controller Assembly (includes SPS, CPU, CPU Motherboard with RUI I/F, Operator Interface with LCD)	373mA	470 mA
4100-6035	Alarm Relay Card	15mA	37mA
$\begin{aligned} & \hline 4100- \\ & 3101 \mathrm{AU} \end{aligned}$	IDNet Module without Devices - per device add - with 250 devices add	75 mA 0.8 mA 200mA	$\begin{aligned} & \hline 115 \mathrm{~mA} \\ & 1 \mathrm{~mA} \\ & 250 \mathrm{~mA} \\ & \hline \end{aligned}$
$\begin{aligned} & \text { 4100- } \\ & 3107 \mathrm{AU} \end{aligned}$	IDNet+ Module without Devices - per device add - \quad with 250 devices add		
$\begin{aligned} & 4100-1288 \\ & 4100-1289 \end{aligned}$	64/64 Controller plus Switch LED Modules - no LED on - per LED on add - with 64 LEDs on add	20 mA 3mA 210mA	$\begin{aligned} & 3 \mathrm{~mA} \\ & 210 \mathrm{~mA} \end{aligned}$
4100-0620	Transponder Interface, Basic Unit	87 mA	87 mA
4100-0625	Transponder Interface, Local Mode	112 mA	112 mA
4100-6014	Network Interface Card	28 mA	28 mA
4100-6056	Wired Media Module	55 mA	55 mA
4100-6057	Fibre Optic Media Module	25 mA	25 mA
4100-6038	Dual RS232 Interface	132 mA	132 mA

Appendix H Power Supply \& Battery Capacity Calculations

Power Supply

Battery Capacity

Part of the system design includes calculating that the quiescent load and the alarm load are each less than the rating of the power supply.

Note that the quiescent load includes devices such as door holders that are normally energized, but get switched off during alarm.

The SPS rating is included in the specifications in Chapter 6.
Note that the system current for both the quiescent and the alarm state can be viewed on the front panel by use of the System Current status point under Card Status for the SPS.

Refer to AS 1670.1 Section 8.2.3 for a definition of the loads to be calculated.

Battery capacity requirements are specified in AS 1670.1, 2004, Section 3.16 .4 with an example shown in Appendix C1.

To calculate the necessary capacity for the 4100ES-S1 system:

- Fill out the table on the next page with the quantities of each type of module or device.
- For each device, calculate the standby current and alarm current.
- Sum the standby and alarm columns to get the total standby current $(\mathrm{I}(\mathrm{S}))$ and alarm current (I(A)).

Calculate the required battery capacity from this equation:
Battery Capacity $(A h r)=(I(S) \times 24+0.5 \times I(A)) \times 1.2$
Note: I(A) allows for two zones in Alarm (including Ancillary loads). The factor of 1.2 in Battery Capacity equation allows for battery efficiency reduction.

Take the calculated value of Battery Capacity and choose the next largest standard size of battery. The 4100ES-S1 cabinet can accommodate 2×40 Ahr batteries.

The following batteries are compatible with the 4100ES-S1.

- Power Sonic PS12 Series
- Century Power Sonic PS12 series
- Sonnenschein A200 Series
- Sonnenschein A300 Series
- Century Yuasa NP Series
- Auscell CJ12 series
- Power Block PB12 series

			Standby Current (A)		Alarm Current (A)	
Module	Description	Qty	each	Subtotal	each	Subtotal
FP0934	4100ES-S1 Basic Panel		0.373		0.47	
4100-1288	64/64 LED Switch Controller (1st controller per bay)		0.02		0.26	
4100-1289	64/64 LED Switch Controller (2nd controller per bay)		0.02		0.26	
4100-3101	IDNET module with 250 addressable devices		0.275		0.365	
4100-0113	RS232 Modem Interface		0.13		0.13	
4100-0154	VESDA HLI		0.13		0.13	
4100-3003	8XSPDT,3A,24VDC Relay module		0.03		0.28	
4100-3024	24 I/O Relay Motherboard + (4100-0302)		0.08		0.3	
4100-4321	6 Supervised Relays		0.02		0.07	
4100-5004	8 AZF Monitor Zone		0.08		0.2	
4100-6014	Modular Network Card (Requires 2 media cards)		0.028		0.028	
4100-6056	Wired Media Card RS485		0.055		0.055	
4100-6057	Fibre Optic Media Card		0.025		0.025	
4100-0160	Fire Panel Internet Interface Module		0.115		0.115	
4100-0766	T-GEN 50 on Amplifier Bracket Voice (2 Slots)		0.05		2.2	
4100-0895	MiniGen on Amplifier Bracket		0.00		0.9	
4100-2895	2nd MiniGen on same Amplifier Bracket		0.00		0.9	
2190-9156	ZAM Monitor - Mapnet 2		0.02		0.09	
2190-9162	ZAM Signal - Mapnet 2		0.015		0.065	
2190-9164	ZAM Control - Mapnet 2		0.01		0.04	
4090-9101	Mapnet / IDNet Monitor ZAM		0.016		0.072	
$\begin{aligned} & \hline 4090- \\ & 9117 \mathrm{AU} \\ & \hline \end{aligned}$	Addressable IDNet Power Isolator		0.01		0.01	
$\begin{array}{\|l\|} \hline 4090- \\ 9120 \mathrm{AU} \\ \hline \end{array}$	IDNet 6 Point I/O Module (4 I/Ps + 2 relay O/Ps)		0.03		0.03	
4090-9050	ZAM 4-20mA Analog - Mapnet 2		0.03		0.03	
4098-9794E	Sounder Base - TrueAlarm				0.015	
4907-0012	Evac Tone Sounder - 24VDC				0.018	
	Other Loads					
	Other Loads					
	Total Power Supply Capacity		I (S) =		$1(A)=$	

Appendix I List of Drawings

The following drawings are included since they are referred to in this manual or are relevant.

1922-96 WA ASE and Cube ASE to Fire Panel Wiring Details
1976-176 4100ES-S1 Presentation Drawing
1976-174 4100ES-S1 Brigade Door Assembly, Sheet 1 ASE, Sheet 3 PPU/AIU/Cube ASE
1976-181 4100ES Australian Wiring Diagrams (collected in LT0432)

©Simplex

 18U, 28 U AND 40 U RACK CABINETS

AIU BRACKET ASSEMBLY FOR 15U RACK CABINETS

TERMINAL BLOCK ON BRACKET

CONFIDENTIAL: THIS DOCUMENT MUST NOT BE COPIED NOR THE CONTENTS PASSED
ON TO THIRD PARTY WTHOUT THE CONENT OF THE COMPANY.

ISS/REV	AMENDMENTS	ECO	DRN	CHKD	AUTH	APVD	DATE
A	ORGINAL	ESCII30	KJS	GEL	LSC	DP	$15-9-08$

tuCD $/\left.\right|_{\text {Profoty }}$
TYCO SAFETY PRODUCTS 7 MARY MULLER DR
PO BOX 19545
P.O. BOX 19545
CHRISTCHRCH, PH: +6433895096
NEW ZEALAND.
FAX: +6433895938

ISS/REV	AMENDMENTS	ECO	DRN	CHKD	AUTH	APVD	DATE
A	ORGINAL	ESC139	KJS	GEL	LSC	DP	15-9-08

tuca $\left.\right|_{\substack{S_{\text {arfety }} \\ \text { Products }}}$
TYCO SAFETY PRODUCTS 17 MARY MULLER DR
C.ORISTCHIRCH, PH: +6433895096
NEW ZEALAND.
FAX: +6433895938

QUEENSLAND				
PPU TO FIRE PANEL				
WIRING AND MOUNTING DETAILS				
DRAWING No: $1922-96$	SHEET 2 of 2			
A2	ISS/REV	A	PART No: LTO316	

ASE DOOR

CUBE ASE/WA ASE

$\frac{\text { T-GEN ACCESSORIES }}{\text { (FIT EITHER DOOR TYPE) }}$

ISS/REV	AMENDMENTS	ECO	DRN	CHKD	AUTH	APVD	DATE
A	ORIGINAL	-	KJS	LSC	RAC	DP	$9-2-06$
B	DRG TITLE BLOCK UPDATED. PRODUCT WAS 4100U S1.	4352	KJS	LSC	RC	DP	$12-4-12$
	M						
	M						
	M						

Fire Protection Products
tyco fire protection products 17 MARY MULLER DRIVE
P.O. BOX 19545

CHRISTCHURCH, PH: +64 33895096 NEW ZEALAND. FAX: +6433895938

$4100 E S ~-~ S 1 ~$					
21U X 240 DEEP CABINET					
PRESENTATION DRAWING					
DRAWING No: $1976-176$	SHEET 2 of 2				
A3	ISS/REV	B	PART	No:	FP0934

4100 U -S1				
FAS INTERFACE ALM/FLT/ISO				
WIRING DETAILS				
 DRAWING No: $1976-174$ SHEET 1 of 5 A3 ISS/REV B PART No: FP0935				

ISS/REV	AMENDMENTS	ECO	DRN	CHKD	AUTH	APVD	DATE
A	ORIGINAL	-	KJS	LSC	RC	DP	$21-12-05$
B	SHEET 5 ADDED. THIS WAS SHT 1 OF 4	ECS1309	GEL	LSC	LSC	DSCP	$03-12-08$
	M						
	M						

tyCD/ Safety

TYCO SAFETY PRODUCTS
17 MARY MULLER DRIVE
P.O. BOX 19545

CHRISTCHURCH, PH: +64 33895096 NEW ZEALAND. FAX:+64 33895938

MAX QTY OF DETECTORS PER CIRCUIT (SEE NOTE 5)					
DETECTOR MODEL	DETECTOR TYPE	$4100-501 / 2 / 4$ 8 ZONE MODULE	$2190-9156$ MONITOR ZAM	$4090-9101$ MONITOR ZAM	
$4098-9601$ EA	PHOTOELECTRIC	30	20	20	
$4098-9603 E A$	IONISATION	30	20	20	
$4098-9618 E A$	HEAT TYPE A	30	20	20	
$4098-9619 E A$	HEAT TYPE B	30	20	20	
$4098-9621 E A$	HEAT TYPE D	30	20	20	
USED IN 4098-9788EA BASES					

NOTES:
IF USED REMOTE INDICATORS ARE POLARIZED; OBSERVE COLOUR-CODED WIRING 2. BREAK WIRES BEFORE CONNECTING TO TERMINAL 4 OR L TO MAINTAIN
3. 2098-111X REMOTE INDICATOR CANNOT BE USED WITH TYCO BASES, AND E50

MAX QTY OF DETECTORS PER CIRCUIT (SEE NOTE 5)					
DETECTOR MODEL	DETECTOR TYPE	$4100-5001 / 2 / 4$ 8 ZONE MODULE	$2190-9156$ MONITOR ZAM	$4090-9101$ MONITOR ZAM	
614 CH	CO AND HEAT	37	25	25	
6141	IONISATION	40	29	29	
614 P	PHOTOELECTRIC	28	19	19	
614 H	HEAT	30	20	20	
USED IN 5B OR MUB BASES					

4. MULTIPLE BASES OF THE SAME TYPE CAN DRIVE A COMMON REMOTE INDICATOR BY MULTIPLE BASES OF THE SAME TYPE CAN DRT A COMMON REMOTE NDICATOR OUTPUTS OF 4098-9788EA BASES WITH 5B (OR MUB) BASES, OR THE DETECTOR CIRCUIT WILL BE SHORT CIRCUITED.
5. WHEN USING MULTIPLE DETECTOR TYPES ON ONE CIRCUIT, THE SUM OF EACH TYPE'S QUANTITY AS A PROPORTION OF ITS MAXIMUM MUST NOT EXCEED 1, E.G. 22×6141 AND $16 \times 4098-9603 E A$ ARE NOT PERMITTED ON 4100-5001 AS $22 / 40+16 / 30$ IS GREATER THAN 1.

ISS/REV	AMENDMENTS	ECO	DRN	CHKD	AUTH	APVD	DATE
A	ORIGINAL	-	KJS				21-7-06

tyca sater

YCO SAFETY PRODUCTS
17 MARY MULLER DRIVE
P.O. BOX 19545

CHRISTCHURCH, PH: +64 33895096
NEW ZEALAND. FAX:+64 33895938

4100U

2 WIRE DETECTOR BASES - CONVENTIONAL DETECTORS

WIRING DIAGRAM

DRAWING No: $1976-181$			SHEET 101 of N
A3	ISS/REV	A	PART No:

CIRCUIT VOLTAGE RATING: 28 VDC INE SUPERVISION CUREENT: 7.5 mA TOTAL SUPERVISION CURRENT: 9.5 mA VOLTAGE SUPPLIED: 15.9 TO 23 V MAX ALARM (SHORT) CIRCUIT CURRENT: 70 mA DISTANCE (WHICHEVER COMES FIRST): 10 OHMS OR 600 m .

1. MAPNET ॥ LINES ARE TO BE 0.75 SQmm OR GREATER TWISTED SHIEIDED PAIR 2190-9156 DOES NOT WORK WITH IDNET.
2. MAXIMUM TOTAL WIRE LENGTH (INCLUDING ALL BRANCHES) ON CIRCUIT NOT TO EXCEED 600 m
3. MAXIMUM QUANTITY OF DEVICES PER MAPNET CIRCUIT: 127
4. MINIMUM WIRE GAUGE FOR 28 VDC WIRING IS 0.75 SQmm
5. IF A ZONE IS WIRED FOR ALARM VERIFICATION WIRE ONLY SMOKE OR HEAT DETECTORS TO THAT ZONE. DO NOT USE ANY OTHER TYPE OF DEVICES ON THE SAME ZONE.
6. IF A ZONE IS NOT USED, CONNECT A $3.3 \mathrm{~K} 1 / 2 \mathrm{~W}$ RESISTOR ACROSS ZONE TERMINALS TB1-11 AND TB1-12.

$\boldsymbol{t} \mathbf{L C D}$ Satery Products

4100U		
MAPNET MONITRR ZONE ADDRESSABLE MODULE (2190-9156)		
WIRING DIAGRAM		

CONFIDENTIAL: THIS DOCUMENT MUST NOT BE COPIED NOR THE CONTENTS PASSED

tula satay Products

TYCO SAFETY PRODUCTS
17 MARY MULLER DRIVE
POO. BOX 19545
CHRISTCHURCH, PH: +64 33895096
NEW ZEALAND. FAX:+64 33895938

WIRE LEGEND
$B=B L A C K$
$R=R E D$
$S=S H E L D$

MAX LOAD PER MONITOR ZAM:
16 mA NORMAL 72 mA ALARM

4100U

ZONE ADDRESSABLE MODULE (4090-9101) WIRING DIAGRAM

DRAWING No: $1976-181$			SHEET 202 of N
AS	ISS/REV	A	PART No:

NOTES:

1. MAXIMUM WIRE LENGTH ON CIRCUIT NOT TO EXCEED 600 m , OR 10 OHMS RESISTANCE.
2. MAPNET \| OR IDNET LINES ARE TO BE 0.75 SQmm OR GREATER TWISTED SHEILDED PAIR.
3. MAXIMUM QUANTITY OF DEVICES PER MAPNET CIRCUIT: 127.
4. MINIMUM WIRE GAUGE FOR 24 VDC WIRING IS 0.75 SQmm.
5. 24 V SUPPLY AT ZAM 20.0-33V DC.
6. IF A ZONE IS NOT USED, CONNECT A $3.3 \mathrm{~K} 1 / 2 \mathrm{~W}$ RESISTOR ACROSS ZONE TERMINALS 7 AND 8.

ISS/REV	AMENDMENTS	ECO	DRN	CHKD	AUTH	APVD	DATE
A	ORIGINAL	-	PAA	RAC	RAC	DSCP	$18-7-07$
	M						
	M						
	M						
	M						

DRAWING No: $1976-181$			SHEET 205 of N
A3	ISS/REV	A	PART No:

CONFIDENTIAL: THIS DOCUMENT MUST NOT BE COPIED NOR THE CONTENTS PASSED
UNLESS OTHERWISE STATE

ISS/REV	AMENDMENTS	ECO	DRN	CHKD	AUTH	APVD	DATE
A	ORIGINAL	-	KJS	LSC	RC	DP	13-4-12

Fire Protection Products

4100 U
IDNET+ LOOP CARD
WIRING DIAGRAM
DRAWING No: 1976-181 SHEET 206 of N

| A3 | ISS/REV | A | PART No: LT0432 |
| :--- | :--- | :--- | :--- | :--- |

CONFIDENTIAL: THIS DOCUMENT MUST NOT BE COPIED NOR THE CONTENTS PASSED

ISS/REV	AMENDMENTS	ECO	DRN	CHKD	AUTH	APVD	DATE
A	ORIGINAL	-	KJS				21-7-06

tபCD $\left.\right|_{\text {Profutucts }} ^{\text {Saf }}$
YCO SAFETY PRODUCTS
17 MARY MULLER DRIVE
P.O. BOX 19545

CHRISTCHURCH, PH: +64 33895096
NEW ZEALAND. FAX:+64 33895938

4100 u		
SUPERVISED IAM (4090-9001, 4090-9051)		
WIRING DIAGRAM		
DRAWING No: $1976-181$ SHEET 301 of N A3 ISS/REV A		

NOTES:

1. DO NOT MOUNT DEVICE WHERE IT WILL EXPERIENCE SHOCKS GREATER THAN 60G, VIBRATION GREATER THAN 2.5 mm (10 TO 55 Hz DOUBLE AMPLITUDE), OR MAGNETIC FIELD GREATER THAN 7000A/m.
2. 2190-9173 CANNOT BE USED WITH IDNet.

tyc: Safety Products

YCO SAFETY PRODUCTS
17 MARY MULLER DRIVE
P.O. BOX 19545

CHRISTCHURCH, PH: +64 33895096
NEW ZEALAND. FAX:+64 33895938

ISS/REV	AMENDMENTS	ECO	DRN	CHKD	AUTH	APVD	DATE
A	ORIGINAL	-	KJS				21-7-06

MAPNET RELAY MODULE WITH SUPERVISED INPUT
(2190-9173) WIRING DIAGRAM
DRAWING No: $1976-181$ SHEET 401 of N A3 ISS/REV A PART No:

SEPARATE NO CONTACTS NOTE: SWITCH (2) OPERATION HIDES SWITCH (1) OPERATION.

CONFIDENTIAL: THIS DOCUMENT MUST NOT BE COPIED NOR THE CONTENTS PASSED UNLESS OTHERWISE STATED: $\begin{aligned} & \text { ALL DIMENSIONS } \operatorname{IN} \text { MILLIMETRES. DO NOT SCALE. TOLERANCES ARE TO BE: } \\ & 1 \text { DECIMAL PLACE } \pm 0.5,2 \text { DECIMAL PLACES } \pm 0.3,3 \text { DECIMAL PLACES } \pm 0.1\end{aligned}$

ISS/REV	AMENDMENTS	ECO	DRN	CHKD	AUTH	APVD	DATE
A	ORIGINAL	-	KJS				21-7-06
B	IAM PART NUMBERS CORRECTED.	-	KJS				6-10-06

tuca $\left.\right|_{\substack{\text { Safoty } \\ \text { Products }}}$

TYCO SAFETY PRODUCTS
17 MARY MULLER DRIVE
P.O. BOX 19545

CHRISTCHURCH, PH: +64 33895096
NEW ZEALAND. FAX:+64 33895938

4100U

IDNET RELAY IAMS WITH INPUTS (4090-9118, 4090-9119) WIRING DIAGRAM

DRAWING No: $1976-181$			SHEET 402 of N
A3	ISS/REV	B	PART No:

WIRING TO RELAY CONTACTS IS UNSUPERVISED.
RELAY CONTACTS RATED AT 2A, 30 VDC.
(1A FOR INDUCTIVE LOAD)
the operation of the relay is PROGRAMMABLE

NOTES:

1. IF SHIELD IS PRESENT, IT SHOULD BE CONNECTED TO THE OUTGOING IDNet SHIELD TO PROVIDE A CONTINUOUS SHIELD OVER THE LENGTH OF THE IDNet CIRCUIT. DO NOT CONNECT THE SHIELD TO ANY METALWORK AT THE ZAM
2. 4090-9002 CANNOT BE USED WITH MAPNET.

IDNet
FROM PREVIOUS DEVICE OR PANEL

IDNet
TO NEXT DEVICE OR PANEL

tLICD Safety

YCO SAFETY PRODUCTS
17 MARY MULLER DRIVE
P.O. BOX 19545

CHRISTCHURCH, PH: +64 33895096
NEW ZEALAND. FAX:+64 33895938

4100 u			
IDNET RELAY IAM (4090-9002)			
WIRING DIAGRAM			
WRAWING No:			
A3	ISS/REV	A	

tuca Products

DRAWING No: $1976-181$			SHEET 405 of N
A3	ISS/REV	A	PART No:

NOTES:

1. ALL WIRING MUST BE 1.5 SQ.mm SHIELDED PAIR OR TO LOCAL COD
2. CONDUCTORS MUST BE FREE OF ALL GROUNDS
3. ALL WIRING IS SUPERVISED UNLESS OTHERWISE NOTED. SUPERVISORY POWER: 2.4 mA @ 24V DC
4. ALL SIGNAL PORTS HAVE IDENTICAL CHARACTERISTICS: CAPACITY IS AT 30V DC.
5. IF A CIRCUIT IS NOT USED, CONNECT $10 \mathrm{~K}, 1 / 2 \mathrm{~W}$ EOLR FROM SIG+ TO SIG- TERMINALS.
6. BLOCKING DIODE - (IN5404, 3A) - REQUIRED WHEN SWITCHING NON-POLARIZED LOADS.
7. OUTPUT OPERATION MUST BE PROGRAMMED. THERE IS NO DEFAULT BEHAVIOUR.
8. DISTRIBUTION LOOMS AND CONNECTORS
-P2 CONNECTS TO THE FIRST TWO POINTS (SIGNAL 3 AND 4) -P3 CONNECTS TO THE NEXT TWO POINTS (SIGNAL 5 AND 6) -P4 CONNECTS TO THE FIRST TWO POINTS (SIGNAL 7 AND 8)
-PINS 1 AND 4 CONNECT TO $+24 V$
-PINS 2 AND 5 CONNECT TO OV.
-PINS 3 AND 6 ARE TO LOOP SHIELD THROUGH (IF USED).
-JUMPERS P5 TO P10 ON SIGNAL CARD ARE IN "S" POSITION.

tuca satery Products

TYCO SAFETY PRODUCTS
7 MARY MULLER DRIVE
P.O. BOX 19545

CHRISTCHURCH, PH: +64 33895096
NEW ZEALAND. FAX:+64 33895938

4100U

6 POINT SIGNAL CARD (4100-4321) WIRING DIAGRAM

DRAWING No: $1976-181$			SHEET 406 of N
A3	ISS/REV	A	PART No:

NOTES:

1. FIT FERRITE BEAD TO EACH NAC CIRCUIT AT THE TERMINALS 2. FIT FERRITE BEAD TO EACH MINI-GEN OUTPUT.
2. LIT FERRITE BEAD TO EACH MINI-GEN OUTPUT. NAC OUTPUTS
3. NAC WIRING TO MINI-GENS SHOULD BE 1.00 SQ mm OR HFAVIER
4. ALLOW 1 W LOSS OF POWER FROM EACH MINI-GEN IN THE EOL RESISTOR
5. THIS WIRING IS APPLICABLE TO ALL VERSIONS OF MINI-GEN.

1 MINI-GEN ON OUTPUT

SPS MODULE IN $4100 \cup$ CABINET
2 MINI-GENS ON 1 OUTPUT

ISS/REV	AMENDMENTS	ECO	DRN	CHKD	AUTH	APVD	DATE
A	ORIINAL	-	KJS				
B	ADDED FERRTE ON MNN-GEN OUTPUTS	4352	KJS	LSC	RC	DP	22-8-06

Fire Protection Products

TYCO FIRE PROTECTION PRODUCTS 7 MARY MULLER DRIVE

4100 U
SPS NAC WIRING TO MINI-GEN TONE GENERATOR WIRING DIAGRAM

DRAWING No: 1976-181 SHEET 409of N

A3	ISS/REV	B	PART No:

1. FIT FERRITE BEAD TO EACH NAC CIRCUIT
2. LEAVE 1OK BETWEEN B+ AND B- OF UNUSED NAC OUTPUTS.
3. NAC WIRING TO STROBE-DRIVERS SHOULD BE 1.00 SQ mm OR HEAVIER.
4. EACH STROBE DRIVER IS RATED AT 2A MAXIMUM. EACH NAC OUTPUT IS

RATED AT 3A MAXIMUM.
5. multicandela strobes and led beacons cannot be mixed on the

FIT FERRITE BEAD TO EACH STROBE DRIVER OUTPUT.

1 STROBE DRIVER ON OUTPUT

COIAL: ON TO ANY THIRD PARTY WITHOUT THE CONSENT OF THE COMPANY.
UNLESS OTHERWISE STATED

ISS/REV	AMENDMENTS	ECO	DRN	CHKD	AUTH	APVD	DATE
A	ORIINAL	-	KJ				$24-8-06$
B	ADDED FERRTE ON STROBE DRVER OUTPUTS	4352	KJS	LSC	RC	DP	$13-4-12$

Fire Protection Products

TYCO FIRE PROTECTION PRODUCTS 17 MARY MULLER DRIVE

4100 U

SPS NAC WIRING TO STROBE DRIVER WIRING DIAGRAM

DRAWING No: 1976-181 SHEET 410 of N

A3	ISS/REV	B	PART No:

ON RELAY CARD
FIT THE LINKS P1, P2, P3 TO THE NO POSITION FOR NORMALLY OPEN CONTACTS.
ROUBLE = FAULT
THE RELYY - IS NORM
位
 ON RELAY CARD
FIT THE LINKS P1, P2, P3 TO THE NC POSITION FOR NORMALLY CLOSED CONTACTS TROUBLE $=$ FAULT SUPERVISORY = ISOLATE THE RELAYS ARE NORMALLY DE-ENERGISED AND ENERGISE ON THE RESPECTIVE STATUS.

WESTERN AUSTRALIA ASE WIRING

SUOO20 \& SU USIN

ASE FAS INTERFACE ALM/FLT/ISO

ISS/REV	AMENDMENTS	ECO	DRN	CHKD	AUTH	APVD	DATE
A	ORIGINAL	-	KJS				$29-8-06$
B	UPDATED FOR NEW WA ASE.	4333	KJS	YZH	RC	DP	$8-3-13$
C	3U ASE DOOR HINGING CHANGED.	4704	KJS	LSC	LSC	DP	$24-2-15$
	M						

4100U

SPS BRIGADE RELAY (4100-6033)
WIRING DIAGRAM

DRAWING No: $1976-181$			SHEET 411 of N
A3	ISS/REV	C	PART No:

CONFIDENTIAL: THIS DOCUMENT MUST NOT BE COPIED NOR THE CONTENTS PASSED UNLESS OTHERWISE STATED: ALL DIMENSIONS IN MILLIMETRES. DO NOT SCALE. TOLERANCES ARE TO BE:

3rd ANGLE PROJECTION

ISS/REV	AMENDMENTS	ECO	DRN	CHKD	AUTH	APVD	DATE
A	ORIGINL	-	KJS	SC			$22-8-06$
B	NOTE 4 ADDED	-	KJS				$5-10-06$
	M						

TYCO SAFETY PRODUCTS
17 MARY MULLER DRIVE
P.O. BOX 19545

CHRISTCHURCH, PH: +64 33895096
NEW ZEALAND. FAX:+64 33895938

4100U
EXAMPLES - FAN CONTROLS WITH RELAY IAMS WIRING DIAGRAM

DRAWING No: $1976-181$			SHEET 412 of N
A3	ISS/REV	B	PART No:

ISS/REV	AMENDMENTS	ECO	DRN	CHKD	AUTH	APVD	DATE
A	ORIGINAL	-	KJS				$7-9-06$
B	"OV" 2 PLACES WAS " +24 "	ECS1371	KJS				$10-7-09$

tyc: ${ }_{\text {Safety }}$

YCO SAFETY PRODUCTS
7 MARY MULLER DRIVE
B.O. BOX 19545

HRISTCHURCH, PH: +64 33895096
NEW ZEALAND. FAX:+64 33895938

4100 u			
24 POINT I/O CARD (002-124)			
WIRING DIAGRAM			
DRAWING No: $1976-181$ SHEET 413of N A3 ISS/REV B			

DNET LOOP
FROM PANEL DEVICE OR PANEL

CONFIDENTIAL: THIS DOCUMENT MUST NOT BE COPIED NOR THE CONTENTS PASSED ON TO ANY THIRD PARTY WITHOUT THE CONSENT OF THE COMPANY

NOTES

1. IF SHIELD IS PRESENT ON IDNET CABLE, CONNECT AS SHOWN. OTHERWISE, LEAVE TERMINAL TB1-3 UNCONNECTED.
2. NOTIFICATION DEVICE DIRECTLY CONNECTED TO THE NAC CIRCUIT WILL NOT BE AFFECTED BY SIGNAL ZAM OPERATION.
3. SIGNAL ZAM OPERATION MUST BE PROGRAMMED
4. SIGNAL ZAM RELAY IS INTERNALLY FUSED AT O.5A. A BLOWN FUSE

WILL SHOW AS A PERMANENT OPEN CIRCUIT FAULT AT THE ZAM.
5. SIGNAL ZAM IS NOT SUITABLE TO SWITCH 100V AUDIO CIRCUITS.

ISS/REV	AMENDMENTS	ECO	DRN	CHKD	AUTH	APVD	DATE
A	ORIGINAL	4352	KJS	LSC	RC	DP	16-4-12

tyc:

Fire Protection Products

TYCO FIRE PROTECTION PRODUCTS

3rd ANGLE
PROJECTION- $-\square-1-1$

4100 u			
SIGNAL ZAM (4090-9007) WIRING			
WIRING DIAGRAM			

CONFIDENTIAL: THIS DOCUMENT MUST NOT BE COPIED NOR THE CONTENTS PASSED

ISS/REV	AMMENDMENTS	ECO	DRN	CHKD	AUTH	APVD	DATE
A	ORIGINAL	-	KJS				29-7-06
	M	M					

tyca $/$ Sitatery

TYCO SAFETY PRODUCTS
17 MARY MULLER DRIVE
P.O. BOX 19545

HRISTCHURCH, PH: +64 33895096
NEW ZEALAND. FAX:+64 33895938

4100U
ADDRESSABLE POWER ISOLATOR (4090-9117 WIRING DIAGRAM

DRAWING No: $1976-181$			SHEET 501 of N
A3	ISS/REV	A	PART No:

NOTES:

1. FIT FERRITE BEAD TO EACH PAIR OF WIRES LEAVING THE CABINET.
2. LOOP MODE (CLASS A) PROVIDES BEST SECURITY SINCE A FAULT IN ONE SECTION WILL NOT PREVENT
COMMUNICATION. IF LOOP MODE IS NOT USED, LINK B+
3. IO A+ AND B- TO A- ON CPU MOTHERBOARD OVERVOLTAGE PROTECTOR AT EXIT AND ENTRY POINTS.
4. THE CONSTRAINTS ON RUI CIRCUIT CABLING ARE:
A. CABLE USED MUST BE 0.75 SQmm OR HEAVIER
(AS 1670.1 REQUIREMENT).
B. THE TOTAL CABLE CAPACITANCE AND RESISTANCE MUST BE NO MORE THAN $0.58 \mu \mathrm{~F}$ AND 36Ω RESPECTIVELY. IF VOLTAGE TRANSIENT SUPPRESSORS ARE USED, THE ADDED CAPACITANCE AND RESISTANCE FROM THESE DEVICES MUST BE CONSIDERED.
C. FOR CLASS B/SPUR WIRING,
i. THE CABLE DISTANCE FROM THE MASTER $4100 \cup$ TO ANY SLAVE RTU IS NO MORE THAN 760 M , AND THE COLLECTIVE DISTANCE OF ALL SPURS ON THE RUI CIRCUIT IS NO MORE THAN 3000M.
ii. THE TOTAL NUMBER OF DETECTION DEVICES SERVED BY THE RUI WIRING IS LIMITED TO 40 (AS 1670.1 REQUIREMENT).
D. FOR CLASS A/LOOP WIRING
i. THE TOTAL CABLE DISTANCE AROUND THE LOOP IS NO MORE THAN 760 M .
ii. THERE IS NO SPECIFIC LIMIT FOR DETECTION DEVICES CONNECTED TO RTUS FORMING PART OF THE LOOP ii. RTED SO 40 BY A SPUR FROM THE LOOP LIMITED TO 40 DETECTION DEVICES (AS 1670.1 REQUIREMENT)
E. RUI CABLING MUST NOT BE RUN CLOSER THAN 5OMM TO 240 V MAINS CABLING, OR CLOSER THAN 150MM TO HIGHER MAINS VOLTAGES (AS S009 REQUIREMENT).
F. IF RUI CABLING AND MAPNET/IDNET CABLING ARE RUN IN CLOSE PARALLEL, E.G., IN CONDUIT, EITHER THE RUI OR THE MAPNET/IDNET CABLING MUST BE SCREENED.

MASTER $4100 \cup$

ISS/REV	AMENDMENTS	ECO	DRN	CHKD	AUTH	APVD	DATE
A	ORIINAL	-	KJS				$24-8-06$
B	ADDED RUI CABLE REQUIREMENTS (FROM PBSO027).	4070	KJS	LSC	RC	DP	$15-10-09$
	M						

tyco satery Products

YCO SAFETY PRODUCTS
17 MARY MULLER DRIVE
P.O. BOX 19545

HRISTCHURCH, PH: +64 33895096
NEW ZEALAND. FAX:+64 33895938

4100U

TRANSPONDER INTERFACE (4100-0620) WIRING DIAGRAM

DRAWING No:			1976-181
A3	ISS/REET 600 of	N	

NOTES:

1. PSU IS MOUNTED ON $4 \times 202-090$ SUPPORT POSTS SUPPLIED WITH THE KIT.
2. THE +VB OUTPUT FROM THE PSU IS BATTERY BACKED. THE +VNB OUTPUT MUST ONLY BE USED FOR EQUIPMENT NOT REQUIRING BATTERY BACK UP. REFER TO LTO232 FOR PSU CONFIGURATION DETAILS
3. THE PSU FLT- OUTPUT MUST BE MONITORED BY THE FIRE PANEL, USING A FEEDBACK INPUT OR SIMILAR. IF AN IAM IS USED, AN ISOLATING RELAY SUCH AS PAO730, MUST BE WIRED BETWEEN THE PSU FLT- OUT AND IAM INPUT. THE RELAY OPERATES ON A FAULT.

CONFIDENTIAL: THIS DOCUMENT MUST NOT BE COPIED NOR THE CONTENTS PASSED
UNLESS OTHERWISE STATED: $\begin{aligned} & \text { ALL DIMENSIONS } \operatorname{IN} \text { MILLIMETRES. DO NOT SCALE. TOLERANCES ARE TO BE: } \\ & 1 \text { DECIMAL PLACE } \pm 0.5,2 \text { DECIMAL PLACES } \pm 0.3,3 \text { DECIMAL PLACES } \pm 0.1\end{aligned}$

ISS/REV	AMENDMENTS	ECO	DRN	CHKD	AUTH	APVD	DATE
A	ORIGINAL	4070	KJS	LSC	RC	DP	15-10-09

TYCO SAFETY PRODUCTS 17 MARY MULLER DRIVE

$4100 \mathrm{U}$ 1948 2A PSU POWER OUTPUTS WIRING DIAGRAM				
DRAWING No: 1976-181 SHEET 701 of N				
A3	ISS/REV		PART No:	LT0432

NOTES:

1. FIT FERRITE BEAD TO EACH PAIR OF WIRES LEAVING THE FIP CABINET.
2. THE CLOCKWISE AND ANTI CLOCKWISE POWER FEED CIRCUITS MUST BE PHYSICALLY SEPARATED FOR REDUNDANCY, UNLESS RUN UNDERGROUND, OR PROTECTED TO LEVEL WSX3 (AS/NZS 3013). (AS1670.1 REQUIREMENT).
3. EACH RTU HAS A COMBINING CIRCUIT AND SUPERVISION FOR THE DUAL DC FEED. SUPPLY FAULTS ARE MONITORED BY THE TRANSPONDER INTERFACE CARD (TIC).
4. THE DC FEEDS FROM THE FIP MUST BE SEPARATELY FUSED OR PROTECTED AGAINST OVERLOAD.
5. MINIMUM CABLE SIZE MUST BE DETERMINED BASED ON TOTAL RTU LOAD. REFER TO SHEET 600 FOR REQUIREMENTS ON THE RTU COMMUNICATIONS WIRING
6. SUGGESTED WIRING AT THE TAP-OFF TO EACH RTU IS SHOWN HERE.

ISS/REV	AMENDMENTS	ECO	DRN	CHKD	AUTH	APVD	DATE
A	ORIGINAL	4070	KJS	LSC	RC	DP	16-10-09

tyca satery Products

4100 u			
RTU - RING FEED DC POWER			
WIRING DIAGRAM			

1. FIT FERRITE BEAD TO EACH PAIR OF WIRES LEAVING THE FIP AND PSU CABINET.
2. THE UP AND DOWN POWER FEED CIRCUITS MUST BE PHYSICALLY SEPARATED FOR REDUNDANCY, UNLESS RUN UNDERGROUND, OR PROTECTED TO LEVEL WSX3 (AS/NZS 3013). (AS1670. REQUIREMENT).
3. EACH RTU HAS A COMBINING CIRCUIT AND SUPERVISION FOR THE DUAL DC FEED. SUPPLY FAULTS ARE MONITORED BY THE TRANSPONDER INTERFACE CARD (TIC).
4. THE TOP POWER MAY BE FROM A MAINS POWERED RTU OR STANDALONE POWER SUPPLY. A STANDALONE SUPPLY MUST BE MONITORED FOR FAULTS
5. NECESSARY WIRING MINIMUM CABLE SIZE MUST BE DETERMINED BASED ON TOTAL RTU LOAD. REFER TO SHEET 600 FOR REQUIREMENTS ON THE RTU COMMUNICATIONS WIRING.
6. SUGGESTED WIRING AT THE TAP-OFF TO EACH RTU IS SHOWN HERE.

tyco sataty Products

TYCO SAFETY PRODUCTS
7 MARY MULLER DRIVE
P.O. BOX 19545

CHRISTCHURCH, PH: +64 33895096
NEW ZEALAND. FAX:+64 33895938

4100 u			
RTU - LINEAR FEED DC POWER			
WIRING DIAGRAM			
DRAWING No: $1976-181$ SHEET 704 of A3 ISS/REV A			

©Simplex

